Spaces:
Sleeping
Sleeping
from dotenv import find_dotenv, load_dotenv | |
from transformers import pipeline | |
from transformers import AutoProcessor, AutoModel | |
from langchain import PromptTemplate, LLMChain | |
from langchain.llms import GooglePalm | |
import scipy | |
import streamlit as st | |
load_dotenv(find_dotenv()) | |
# img2text | |
def img_2_text(url): | |
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") | |
text = image_to_text(url)[0]["generated_text"] | |
return text | |
# llm | |
def generate_story(scenario): | |
template = """" | |
You are a story teller; | |
you can generate a creative fun story based on a sample narrative, the story should not be more than 100 words; | |
CONTEXT: {scenario} | |
STORY: | |
""" | |
prompt = PromptTemplate(template=template, | |
input_variables=['scenario'] | |
) | |
llm = GooglePalm(temperature=0.7) | |
story_llm = LLMChain(llm=llm, prompt=prompt, verbose=True) | |
story = story_llm.predict(scenario=scenario) | |
return story | |
# | |
# text-to-speech | |
def text_to_speech(text): | |
processor = AutoProcessor.from_pretrained("suno/bark-small") | |
model = AutoModel.from_pretrained("suno/bark-small") | |
inputs = processor( | |
text=[text], | |
return_tensors="pt", | |
) | |
speech_values = model.generate(**inputs, do_sample=True) | |
sampling_rate = model.generation_config.sample_rate | |
scipy.io.wavfile.write("audio.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze()) | |
def main(): | |
st.set_page_config(page_title="img 2 audio story") | |
st.header("turn image to audio story") | |
uploaded_file = st.file_uploader("Choose an image ... ", type="jpg") | |
if uploaded_file is not None: | |
print(uploaded_file) | |
bytes_data = uploaded_file.getvalue() | |
with open(uploaded_file.name, "wb") as file: | |
file.write(bytes_data) | |
st.image(uploaded_file, caption="Uploaded image", use_column_width=True) | |
text = img_2_text(uploaded_file.name) | |
story = generate_story(text) | |
text_to_speech(story) | |
with st.expander("text"): | |
st.write(text) | |
with st.expander("story"): | |
st.write(story) | |
st.audio("audio.wav") | |
main() | |