Spaces:
Sleeping
Sleeping
File size: 11,159 Bytes
b9be817 a6dd66b b9be817 a6dd66b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# -*- coding: utf-8 -*-
"""2_preprocessing_test.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/10c3x9G9z70J73l0LJDA8_VDZphQmHEZB
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
import os
from sklearn.model_selection import train_test_split
import pickle
import warnings
warnings.filterwarnings('ignore')
df1 = pd.read_csv("/content/drive/MyDrive/Google Colab/disease-symptom-prediction/data/dataset.csv")
print(df1.shape)
df1.head()
df1.sort_values(by='Disease', inplace=True)
df1.head()
df1.drop_duplicates(inplace=True)
df1.shape
df1['Disease'].value_counts()
df1[df1['Disease']=="Fungal infection"]
df1.fillna("none", inplace=True)
df1[df1['Disease']=="Fungal infection"]
df1.columns = df1.columns.str.strip().str.lower()
for col in df1.columns:
df1[col] = df1[col].astype(str).str.strip().str.lower()
symptom_cols = [col for col in df1.columns if col.startswith('symptom')]
print(symptom_cols)
all_symptoms = set()
for col in symptom_cols:
for val in df1[col].unique():
if val != 'none':
all_symptoms.add(val)
print(f"Unique symptoms: {len(all_symptoms)}")
print(all_symptoms)
df1.head()
df1_num = pd.DataFrame(df1['disease'])
for symptom in all_symptoms:
df1_num[symptom] = df1[symptom_cols].apply(lambda row: int(symptom in row.values), axis=1)
df1_num
X = df1_num.drop('disease', axis=1)
y = df1_num['disease']
X.shape, y.shape
X.sum(axis=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y)
print(np.unique(y_train, return_counts=True))
print(np.unique(y_test, return_counts=True))
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=100,random_state=42)
model.fit(X_train, y_train)
model.fit(X_train, y_train)
import pickle
# Save model
with open("disease_model.pkl", "wb") as f:
pickle.dump(model, f)
# Save symptom list (to use in the app later)
with open("symptoms.pkl", "wb") as f:
pickle.dump(list(all_symptoms), f)
# Original symptoms (keys)
all_symptoms = sorted(all_symptoms)
# Create display labels by replacing '_' with ' ' and capitalizing each word
display_symptoms = [symptom.replace('_', ' ').title() for symptom in all_symptoms]
# Create a mapping from display label back to original symptom key
label_to_symptom = dict(zip(display_symptoms, all_symptoms))
from sklearn.metrics import accuracy_score, f1_score
y_train_pred = model.predict(X_train)
train_accuracy = accuracy_score(y_train, y_train_pred)
train_f1_score = f1_score(y_train, y_train_pred,average="weighted")
print("Train Accuracy:", train_accuracy)
print("Train f1 score:", train_f1_score)
y_test_pred = model.predict(X_test)
test_accuracy = accuracy_score(y_test, y_test_pred)
test_f1_score = f1_score(y_test, y_test_pred, average="weighted")
print("Train Accuracy:", test_accuracy)
print("Train f1 score:", test_f1_score)
import numpy as np
# Example user symptoms
user_symptoms = ['nausea', 'vomiting', 'abdominal_pain', 'diarrhoea']
# Tip for the user
if len(user_symptoms) < 4:
print("Tip: The model performs better if you enter at least 4 symptoms.\n")
# Convert symptoms to input vector
input_vector = [1 if symptom in user_symptoms else 0 for symptom in all_symptoms]
input_vector = np.array([input_vector])
# Make prediction and get probabilities
probas = model.predict_proba(input_vector)[0]
max_proba = np.max(probas)
predicted = model.classes_[np.argmax(probas)]
# Confidence threshold
threshold = 0.5
# Print predicted disease and confidence
if max_proba < threshold:
print("Warning: The model is not confident about this prediction.")
print(f"Predicted disease: {predicted} (Confidence: {max_proba * 100:.1f}%)")
else:
print(f"Predicted disease: {predicted} (Confidence: {max_proba * 100:.1f}%)")
# Function to print top N diseases
def print_top_diseases(probas, model, top_n=5):
classes = model.classes_
sorted_indices = np.argsort(probas)[::-1]
print(f"\nTop {top_n} possible diseases:")
for i in range(min(top_n, len(classes))):
disease = classes[sorted_indices[i]]
probability = probas[sorted_indices[i]]
print(f"{i+1}. {disease}: {probability:.4f}")
# Show top 5 possible diseases
print_top_diseases(probas, model, top_n=5)
import gradio as gr
import pickle
import numpy as np
# --- 1. Load Disease Prediction Model ---
with open("disease_model.pkl", "rb") as f:
model = pickle.load(f)
with open("symptoms.pkl", "rb") as f:
all_symptoms = pickle.load(f)
# Preprocess symptoms
all_symptoms = sorted(all_symptoms)
display_symptoms = [s.replace('_', ' ').title() for s in all_symptoms]
label_to_symptom = dict(zip(display_symptoms, all_symptoms))
# --- 2. Medical Knowledge Base ---
MEDICAL_KNOWLEDGE = {
"migraine": [
"For migraines: (1) Rest in dark room (2) OTC pain relievers (ibuprofen/acetaminophen) (3) Apply cold compress (4) Consult neurologist if frequent",
"Migraine treatment options include triptans (prescription) and caffeine. Avoid triggers like bright lights or strong smells."
],
"allergy": [
"Allergy management: (1) Antihistamines (cetirizine/loratadine) (2) Nasal sprays (3) Allergy shots (immunotherapy) for severe cases",
"For food allergies: Strict avoidance, carry epinephrine auto-injector (EpiPen), read food labels carefully"
],
"cold": [
"Treat colds with rest, fluids, and OTC pain relievers. See doctor if fever lasts >3 days",
"Most colds resolve in 7-10 days. Use decongestants for nasal congestion"
],
"headache": [
"For headaches: Hydrate, rest, and use OTC pain relievers sparingly",
"Persistent headaches require medical evaluation - consult your doctor"
],
"fever": [
"For fever: Rest, fluids, and acetaminophen/ibuprofen. Seek help if >39°C or lasts >3 days",
"High fever warning: Seek emergency care if fever >40°C or with stiff neck"
]
}
SPECIAL_RESPONSES = {
"general approaches": "I can provide specific guidance for: allergies, migraines, colds, fever, back pain, rashes. What condition are you asking about?",
"consult a doctor": "For these symptoms, seek medical care: severe pain, difficulty breathing, sudden weakness, high fever (>103°F), or symptoms lasting >7 days"
}
def get_medical_response(user_query):
user_query = user_query.lower()
# First check for special cases
for phrase, response in SPECIAL_RESPONSES.items():
if phrase in user_query:
return response
# Then check medical conditions
for condition, responses in MEDICAL_KNOWLEDGE.items():
if condition in user_query:
return np.random.choice(responses)
# Final improvement - suggest related conditions
related = [cond for cond in MEDICAL_KNOWLEDGE.keys() if cond in user_query]
if related:
return f"Are you asking about {', '.join(related)}? {np.random.choice(MEDICAL_KNOWLEDGE[related[0]])}"
return "I can advise on: " + ", ".join(MEDICAL_KNOWLEDGE.keys()) + ". Please be more specific."
# --- 3. Disease Prediction Function ---
def predict_disease(selected_labels):
if not selected_labels or len(selected_labels) < 4:
return "⚠️ Please select at least 4 symptoms for accurate results."
user_symptoms = [label_to_symptom[label] for label in selected_labels]
input_vector = [1 if symptom in user_symptoms else 0 for symptom in all_symptoms]
input_vector = np.array([input_vector])
probas = model.predict_proba(input_vector)[0]
max_proba = np.max(probas)
predicted = model.classes_[np.argmax(probas)]
sorted_indices = np.argsort(probas)[::-1]
top_diseases = [
f"<b>{i+1}. {model.classes_[idx]}</b> — {probas[idx]*100:.1f}%"
for i, idx in enumerate(sorted_indices[:3])
]
prediction_result = (
f"<div style='background: #001a33; padding: 15px; border-radius: 8px; margin-bottom: 15px;'>"
f"<h3 style='color: #4fc3f7; margin-top: 0;'>🩺 Predicted Disease</h3>"
f"<p style='font-size: 18px; color: white;'>{predicted} <span style='color: #4fc3f7'>({max_proba*100:.1f}% confidence)</span></p>"
"</div>"
"<div style='background: #001a33; padding: 15px; border-radius: 8px;'>"
"<h3 style='color: #4fc3f7; margin-top: 0;'>🔍 Top 3 Possible Diseases</h3>"
"<ul style='color: white; padding-left: 20px;'>" +
"".join([f"<li>{d}</li>" for d in top_diseases]) +
"</ul>"
"</div>"
)
return prediction_result
# --- 4. Chat Responder ---
def chatbot_respond(message, chat_history):
response = get_medical_response(message)
return chat_history + [(message, response)], ""
# --- 5. UI Setup ---
custom_css = """
:root {
--primary: #4fc3f7;
--secondary: #001a33;
--text: #ffffff;
--bg: #0a192f;
--card-bg: #0a2342;
--error: #ff6b6b;
}
body, .gradio-container {
background: var(--bg) !important;
color: var(--text) !important;
font-family: 'Segoe UI', Roboto, sans-serif;
}
/* [Keep all your existing CSS styles] */
"""
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("""
<div style="text-align: center; margin-bottom: 20px;">
<h1 style="margin-bottom: 5px;">🧬 Medical Diagnosis Assistant</h1>
<p style="color: #4fc3f7; font-size: 16px;">Select symptoms for diagnosis and get medical advice</p>
</div>
""")
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=300):
gr.Markdown("### 🔍 Symptom Checker")
symptoms_input = gr.CheckboxGroup(
choices=display_symptoms,
label="Select your symptoms:",
interactive=True
)
predict_btn = gr.Button("Analyze Symptoms", variant="primary")
prediction_output = gr.Markdown(
label="Diagnosis Results",
value="Your results will appear here..."
)
with gr.Column(scale=1, min_width=400):
gr.Markdown("### 💬 Medical Advisor")
chatbot = gr.Chatbot(
label="Chat with Medical Advisor",
show_label=False,
bubble_full_width=False
)
with gr.Row():
user_input = gr.Textbox(
placeholder="Ask about symptoms or treatments...",
label="",
show_label=False,
container=False,
scale=7
)
send_btn = gr.Button("Send", scale=1, min_width=80)
# Event handlers
predict_btn.click(
fn=predict_disease,
inputs=symptoms_input,
outputs=prediction_output
)
send_btn.click(
fn=chatbot_respond,
inputs=[user_input, chatbot],
outputs=[chatbot, user_input]
)
user_input.submit(
fn=chatbot_respond,
inputs=[user_input, chatbot],
outputs=[chatbot, user_input]
)
demo.launch() |