Update app.py
Browse files
app.py
CHANGED
@@ -1,166 +1,10 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""2_preprocessing_test.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colab.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/10c3x9G9z70J73l0LJDA8_VDZphQmHEZB
|
8 |
-
"""
|
9 |
-
|
10 |
-
|
11 |
import pandas as pd
|
12 |
import numpy as np
|
13 |
-
import matplotlib.pyplot as plt
|
14 |
-
from sklearn.preprocessing import LabelEncoder
|
15 |
-
import os
|
16 |
-
from sklearn.model_selection import train_test_split
|
17 |
import pickle
|
18 |
-
import warnings
|
19 |
-
warnings.filterwarnings('ignore')
|
20 |
-
|
21 |
-
df1 = pd.read_csv("/content/drive/MyDrive/Google Colab/disease-symptom-prediction/data/dataset.csv")
|
22 |
-
|
23 |
-
print(df1.shape)
|
24 |
-
df1.head()
|
25 |
-
|
26 |
-
df1.sort_values(by='Disease', inplace=True)
|
27 |
-
df1.head()
|
28 |
-
|
29 |
-
df1.drop_duplicates(inplace=True)
|
30 |
-
df1.shape
|
31 |
-
|
32 |
-
df1['Disease'].value_counts()
|
33 |
-
|
34 |
-
df1[df1['Disease']=="Fungal infection"]
|
35 |
-
|
36 |
-
df1.fillna("none", inplace=True)
|
37 |
-
df1[df1['Disease']=="Fungal infection"]
|
38 |
-
|
39 |
-
df1.columns = df1.columns.str.strip().str.lower()
|
40 |
-
for col in df1.columns:
|
41 |
-
df1[col] = df1[col].astype(str).str.strip().str.lower()
|
42 |
-
|
43 |
-
|
44 |
-
symptom_cols = [col for col in df1.columns if col.startswith('symptom')]
|
45 |
-
print(symptom_cols)
|
46 |
-
|
47 |
-
all_symptoms = set()
|
48 |
-
for col in symptom_cols:
|
49 |
-
for val in df1[col].unique():
|
50 |
-
if val != 'none':
|
51 |
-
all_symptoms.add(val)
|
52 |
-
print(f"Unique symptoms: {len(all_symptoms)}")
|
53 |
-
|
54 |
-
print(all_symptoms)
|
55 |
-
|
56 |
-
df1.head()
|
57 |
-
|
58 |
-
df1_num = pd.DataFrame(df1['disease'])
|
59 |
-
|
60 |
-
for symptom in all_symptoms:
|
61 |
-
df1_num[symptom] = df1[symptom_cols].apply(lambda row: int(symptom in row.values), axis=1)
|
62 |
-
|
63 |
-
df1_num
|
64 |
-
|
65 |
-
X = df1_num.drop('disease', axis=1)
|
66 |
-
y = df1_num['disease']
|
67 |
-
X.shape, y.shape
|
68 |
-
|
69 |
-
X.sum(axis=1)
|
70 |
-
|
71 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y)
|
72 |
-
|
73 |
-
print(np.unique(y_train, return_counts=True))
|
74 |
-
print(np.unique(y_test, return_counts=True))
|
75 |
-
|
76 |
-
from sklearn.ensemble import RandomForestClassifier
|
77 |
-
|
78 |
-
model = RandomForestClassifier(n_estimators=100,random_state=42)
|
79 |
-
model.fit(X_train, y_train)
|
80 |
-
model.fit(X_train, y_train)
|
81 |
-
|
82 |
-
import pickle
|
83 |
-
|
84 |
-
# Save model
|
85 |
-
with open("disease_model.pkl", "wb") as f:
|
86 |
-
pickle.dump(model, f)
|
87 |
-
|
88 |
-
# Save symptom list (to use in the app later)
|
89 |
-
with open("symptoms.pkl", "wb") as f:
|
90 |
-
pickle.dump(list(all_symptoms), f)
|
91 |
-
|
92 |
-
# Original symptoms (keys)
|
93 |
-
all_symptoms = sorted(all_symptoms)
|
94 |
-
|
95 |
-
# Create display labels by replacing '_' with ' ' and capitalizing each word
|
96 |
-
display_symptoms = [symptom.replace('_', ' ').title() for symptom in all_symptoms]
|
97 |
-
|
98 |
-
# Create a mapping from display label back to original symptom key
|
99 |
-
label_to_symptom = dict(zip(display_symptoms, all_symptoms))
|
100 |
-
|
101 |
-
from sklearn.metrics import accuracy_score, f1_score
|
102 |
-
|
103 |
-
y_train_pred = model.predict(X_train)
|
104 |
-
|
105 |
-
train_accuracy = accuracy_score(y_train, y_train_pred)
|
106 |
-
train_f1_score = f1_score(y_train, y_train_pred,average="weighted")
|
107 |
-
|
108 |
-
print("Train Accuracy:", train_accuracy)
|
109 |
-
print("Train f1 score:", train_f1_score)
|
110 |
-
|
111 |
-
y_test_pred = model.predict(X_test)
|
112 |
-
test_accuracy = accuracy_score(y_test, y_test_pred)
|
113 |
-
test_f1_score = f1_score(y_test, y_test_pred, average="weighted")
|
114 |
-
print("Train Accuracy:", test_accuracy)
|
115 |
-
print("Train f1 score:", test_f1_score)
|
116 |
-
|
117 |
-
import numpy as np
|
118 |
-
|
119 |
-
# Example user symptoms
|
120 |
-
user_symptoms = ['nausea', 'vomiting', 'abdominal_pain', 'diarrhoea']
|
121 |
-
|
122 |
-
# Tip for the user
|
123 |
-
if len(user_symptoms) < 4:
|
124 |
-
print("Tip: The model performs better if you enter at least 4 symptoms.\n")
|
125 |
-
|
126 |
-
# Convert symptoms to input vector
|
127 |
-
input_vector = [1 if symptom in user_symptoms else 0 for symptom in all_symptoms]
|
128 |
-
input_vector = np.array([input_vector])
|
129 |
-
|
130 |
-
# Make prediction and get probabilities
|
131 |
-
probas = model.predict_proba(input_vector)[0]
|
132 |
-
max_proba = np.max(probas)
|
133 |
-
predicted = model.classes_[np.argmax(probas)]
|
134 |
-
|
135 |
-
# Confidence threshold
|
136 |
-
threshold = 0.5
|
137 |
-
|
138 |
-
# Print predicted disease and confidence
|
139 |
-
if max_proba < threshold:
|
140 |
-
print("Warning: The model is not confident about this prediction.")
|
141 |
-
print(f"Predicted disease: {predicted} (Confidence: {max_proba * 100:.1f}%)")
|
142 |
-
else:
|
143 |
-
print(f"Predicted disease: {predicted} (Confidence: {max_proba * 100:.1f}%)")
|
144 |
-
|
145 |
-
# Function to print top N diseases
|
146 |
-
def print_top_diseases(probas, model, top_n=5):
|
147 |
-
classes = model.classes_
|
148 |
-
sorted_indices = np.argsort(probas)[::-1]
|
149 |
-
print(f"\nTop {top_n} possible diseases:")
|
150 |
-
for i in range(min(top_n, len(classes))):
|
151 |
-
disease = classes[sorted_indices[i]]
|
152 |
-
probability = probas[sorted_indices[i]]
|
153 |
-
print(f"{i+1}. {disease}: {probability:.4f}")
|
154 |
-
|
155 |
-
# Show top 5 possible diseases
|
156 |
-
print_top_diseases(probas, model, top_n=5)
|
157 |
-
|
158 |
-
|
159 |
import gradio as gr
|
160 |
-
import pickle
|
161 |
-
import numpy as np
|
162 |
|
163 |
# --- 1. Load Disease Prediction Model ---
|
|
|
164 |
with open("disease_model.pkl", "rb") as f:
|
165 |
model = pickle.load(f)
|
166 |
|
@@ -174,12 +18,10 @@ label_to_symptom = dict(zip(display_symptoms, all_symptoms))
|
|
174 |
|
175 |
# --- 2. Medical Knowledge Base ---
|
176 |
MEDICAL_KNOWLEDGE = {
|
177 |
-
|
178 |
"migraine": [
|
179 |
"For migraines: (1) Rest in dark room (2) OTC pain relievers (ibuprofen/acetaminophen) (3) Apply cold compress (4) Consult neurologist if frequent",
|
180 |
"Migraine treatment options include triptans (prescription) and caffeine. Avoid triggers like bright lights or strong smells."
|
181 |
],
|
182 |
-
|
183 |
"allergy": [
|
184 |
"Allergy management: (1) Antihistamines (cetirizine/loratadine) (2) Nasal sprays (3) Allergy shots (immunotherapy) for severe cases",
|
185 |
"For food allergies: Strict avoidance, carry epinephrine auto-injector (EpiPen), read food labels carefully"
|
@@ -275,13 +117,31 @@ body, .gradio-container {
|
|
275 |
color: var(--text) !important;
|
276 |
font-family: 'Segoe UI', Roboto, sans-serif;
|
277 |
}
|
278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
"""
|
280 |
|
281 |
-
with gr.Blocks(css=custom_css) as demo:
|
282 |
gr.Markdown("""
|
283 |
<div style="text-align: center; margin-bottom: 20px;">
|
284 |
-
<h1 style="margin-bottom: 5px;">🧬 Medical Diagnosis Assistant</h1>
|
285 |
<p style="color: #4fc3f7; font-size: 16px;">Select symptoms for diagnosis and get medical advice</p>
|
286 |
</div>
|
287 |
""")
|
@@ -295,9 +155,9 @@ with gr.Blocks(css=custom_css) as demo:
|
|
295 |
interactive=True
|
296 |
)
|
297 |
predict_btn = gr.Button("Analyze Symptoms", variant="primary")
|
298 |
-
prediction_output = gr.
|
299 |
label="Diagnosis Results",
|
300 |
-
value="Your results will appear here
|
301 |
)
|
302 |
|
303 |
with gr.Column(scale=1, min_width=400):
|
@@ -305,7 +165,10 @@ with gr.Blocks(css=custom_css) as demo:
|
|
305 |
chatbot = gr.Chatbot(
|
306 |
label="Chat with Medical Advisor",
|
307 |
show_label=False,
|
308 |
-
bubble_full_width=False
|
|
|
|
|
|
|
309 |
)
|
310 |
with gr.Row():
|
311 |
user_input = gr.Textbox(
|
@@ -334,4 +197,5 @@ with gr.Blocks(css=custom_css) as demo:
|
|
334 |
outputs=[chatbot, user_input]
|
335 |
)
|
336 |
|
|
|
337 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
|
|
|
|
|
|
|
|
3 |
import pickle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
|
|
|
|
5 |
|
6 |
# --- 1. Load Disease Prediction Model ---
|
7 |
+
# Load model and symptoms from files (upload these to your HF Space)
|
8 |
with open("disease_model.pkl", "rb") as f:
|
9 |
model = pickle.load(f)
|
10 |
|
|
|
18 |
|
19 |
# --- 2. Medical Knowledge Base ---
|
20 |
MEDICAL_KNOWLEDGE = {
|
|
|
21 |
"migraine": [
|
22 |
"For migraines: (1) Rest in dark room (2) OTC pain relievers (ibuprofen/acetaminophen) (3) Apply cold compress (4) Consult neurologist if frequent",
|
23 |
"Migraine treatment options include triptans (prescription) and caffeine. Avoid triggers like bright lights or strong smells."
|
24 |
],
|
|
|
25 |
"allergy": [
|
26 |
"Allergy management: (1) Antihistamines (cetirizine/loratadine) (2) Nasal sprays (3) Allergy shots (immunotherapy) for severe cases",
|
27 |
"For food allergies: Strict avoidance, carry epinephrine auto-injector (EpiPen), read food labels carefully"
|
|
|
117 |
color: var(--text) !important;
|
118 |
font-family: 'Segoe UI', Roboto, sans-serif;
|
119 |
}
|
120 |
+
.gr-button {
|
121 |
+
background: var(--primary) !important;
|
122 |
+
color: var(--secondary) !important;
|
123 |
+
border: none !important;
|
124 |
+
}
|
125 |
+
.gr-button:hover {
|
126 |
+
opacity: 0.9 !important;
|
127 |
+
}
|
128 |
+
.gr-checkbox {
|
129 |
+
background: var(--card-bg) !important;
|
130 |
+
border-color: var(--primary) !important;
|
131 |
+
}
|
132 |
+
.gr-checkbox label {
|
133 |
+
color: var(--text) !important;
|
134 |
+
}
|
135 |
+
.gr-interface {
|
136 |
+
max-width: 1200px !important;
|
137 |
+
margin: 0 auto !important;
|
138 |
+
}
|
139 |
"""
|
140 |
|
141 |
+
with gr.Blocks(css=custom_css, title="Medical Diagnosis Assistant") as demo:
|
142 |
gr.Markdown("""
|
143 |
<div style="text-align: center; margin-bottom: 20px;">
|
144 |
+
<h1 style="margin-bottom: 5px; color: #4fc3f7;">🧬 Medical Diagnosis Assistant</h1>
|
145 |
<p style="color: #4fc3f7; font-size: 16px;">Select symptoms for diagnosis and get medical advice</p>
|
146 |
</div>
|
147 |
""")
|
|
|
155 |
interactive=True
|
156 |
)
|
157 |
predict_btn = gr.Button("Analyze Symptoms", variant="primary")
|
158 |
+
prediction_output = gr.HTML(
|
159 |
label="Diagnosis Results",
|
160 |
+
value="<div style='padding: 20px; background: #001a33; border-radius: 8px; color: white;'>Your results will appear here...</div>"
|
161 |
)
|
162 |
|
163 |
with gr.Column(scale=1, min_width=400):
|
|
|
165 |
chatbot = gr.Chatbot(
|
166 |
label="Chat with Medical Advisor",
|
167 |
show_label=False,
|
168 |
+
bubble_full_width=False,
|
169 |
+
avatar_images=(
|
170 |
+
None, (None, "assets/doctor_avatar.png")
|
171 |
+
)
|
172 |
)
|
173 |
with gr.Row():
|
174 |
user_input = gr.Textbox(
|
|
|
197 |
outputs=[chatbot, user_input]
|
198 |
)
|
199 |
|
200 |
+
# For Hugging Face Spaces
|
201 |
demo.launch()
|