Spaces:
Sleeping
Sleeping
import os | |
import random | |
import uuid | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import torch | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
from typing import Tuple | |
# CSS for Gradio Interface | |
css = ''' | |
.gradio-container{max-width: 575px !important} | |
h1{text-align:center} | |
footer { | |
visibility: hidden | |
} | |
''' | |
DESCRIPTION = """ | |
## Text-to-Image Generator 🚀 | |
Create stunning images from text prompts using Stable Diffusion XL. Explore high-quality styles and customizable options. | |
""" | |
# Example Prompts | |
examples = [ | |
"A beautiful sunset over the ocean, ultra-realistic, high resolution", | |
"A futuristic cityscape with flying cars, cyberpunk theme, vibrant colors", | |
"A cozy cabin in the woods during winter, detailed and realistic", | |
"A magical forest with glowing plants and creatures, fantasy art", | |
] | |
# Model Configurations | |
MODEL_OPTIONS = { | |
"LIGHTNING V5.0": "SG161222/RealVisXL_V5.0_Lightning", | |
"LIGHTNING V4.0": "SG161222/RealVisXL_V4.0_Lightning", | |
} | |
# Define Styles | |
style_list = [ | |
{ | |
"name": "Ultra HD", | |
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", | |
}, | |
{ | |
"name": "4K Realistic", | |
"prompt": "realistic 4K image of {prompt}. sharp, detailed, vibrant colors, photorealistic", | |
"negative_prompt": "cartoonish, blurry, low resolution", | |
}, | |
{ | |
"name": "Minimal Style", | |
"prompt": "{prompt}, clean, minimalistic", | |
"negative_prompt": "", | |
}, | |
] | |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
DEFAULT_STYLE_NAME = "Ultra HD" | |
# Define Global Variables | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
MAX_IMAGE_SIZE = 4096 | |
MAX_SEED = np.iinfo(np.int32).max | |
# Load Model Function | |
def load_and_prepare_model(model_id): | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
).to(device) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
return pipe | |
# Load Models | |
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()} | |
# Generate Function | |
def generate_image( | |
model_choice: str, | |
prompt: str, | |
negative_prompt: str, | |
style_name: str, | |
width: int, | |
height: int, | |
guidance_scale: float, | |
num_steps: int, | |
num_images: int, | |
randomize_seed: bool, | |
seed: int, | |
): | |
# Apply Style | |
positive_style, negative_style = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
styled_prompt = positive_style.replace("{prompt}", prompt) | |
styled_negative_prompt = negative_style + (negative_prompt if negative_prompt else "") | |
# Randomize Seed if Enabled | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
# Generate Images | |
pipe = models[model_choice] | |
images = pipe( | |
prompt=[styled_prompt] * num_images, | |
negative_prompt=[styled_negative_prompt] * num_images, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_steps, | |
generator=generator, | |
output_type="pil", | |
).images | |
# Save and Return Images | |
image_paths = [] | |
for img in images: | |
unique_name = f"{uuid.uuid4()}.png" | |
img.save(unique_name) | |
image_paths.append(unique_name) | |
return image_paths, seed | |
# Gradio Interface | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
model_choice = gr.Dropdown( | |
label="Select Model", | |
choices=list(MODEL_OPTIONS.keys()), | |
value="LIGHTNING V5.0", | |
) | |
prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="Enter your creative prompt here...", | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
placeholder="Optional: Add details you want to avoid...", | |
value="blurry, deformed, low-quality, cartoonish", | |
) | |
style_name = gr.Radio( | |
label="Style", | |
choices=list(styles.keys()), | |
value=DEFAULT_STYLE_NAME, | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
width = gr.Slider(label="Width", minimum=512, maximum=2048, step=8, value=1024) | |
height = gr.Slider(label="Height", minimum=512, maximum=2048, step=8, value=1024) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=20, | |
step=0.5, | |
value=7.5, | |
) | |
num_steps = gr.Slider( | |
label="Steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=25, | |
) | |
num_images = gr.Slider( | |
label="Number of Images", | |
minimum=1, | |
maximum=5, | |
step=1, | |
value=1, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42) | |
with gr.Row(): | |
run_button = gr.Button("Generate Images") | |
result_gallery = gr.Gallery(label="Generated Images", show_label=False) | |
run_button.click( | |
generate_image, | |
inputs=[ | |
model_choice, | |
prompt, | |
negative_prompt, | |
style_name, | |
width, | |
height, | |
guidance_scale, | |
num_steps, | |
num_images, | |
randomize_seed, | |
seed, | |
], | |
outputs=[result_gallery, seed], | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=50).launch() | |