Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -42,11 +42,6 @@ def predict_rf(age, workclass, education, occupation, race, gender, capital_ga
|
|
| 42 |
return "Income >50K" if prediction == 1 else "Income <=50K"
|
| 43 |
|
| 44 |
def predict_hb(age, workclass, education, occupation, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
|
| 45 |
-
# columns = {
|
| 46 |
-
# "age": [age], "workclass":[workclass], "educational-num":[education], "marital-status":[marital_status], "occupation":[occupation],
|
| 47 |
-
# "relationship":[relationship], "race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
|
| 48 |
-
# "hours-per-week":[hours_per_week], "native-country":[native_country]}
|
| 49 |
-
|
| 50 |
|
| 51 |
columns = {
|
| 52 |
"age": [age], "workclass":[workclass], "educational-num":[education], "occupation":[occupation],
|
|
@@ -55,23 +50,23 @@ def predict_hb(age, workclass, education, occupation, race, gender, capital_ga
|
|
| 55 |
df = pd.DataFrame(data=columns)
|
| 56 |
fixed_features = cleaning_features(df,race,True)
|
| 57 |
print(fixed_features)
|
| 58 |
-
hdb_model = pickle.load(open('hdbscan_model.pkl', 'rb'))
|
| 59 |
-
prediction = hdb_model.approximate_predict(fixed_features)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
|
| 76 |
return f"Predicted Cluster (HDBSCAN): {prediction[-1]}"
|
| 77 |
|
|
@@ -127,19 +122,14 @@ def cleaning_features(data,race,hdbscan):
|
|
| 127 |
data[f'race_{races}'] = 1
|
| 128 |
else:
|
| 129 |
data[f'race_{races}'] = 0
|
| 130 |
-
|
| 131 |
-
# race_encoded = encoder.transform(data[[N]])
|
| 132 |
-
# race_encoded_cols = encoder.get_feature_names_out([N])
|
| 133 |
-
# race_encoded_df = pd.DataFrame(race_encoded, columns=race_encoded_cols, index=data.index)
|
| 134 |
-
# # Combine the encoded data with original dataframe
|
| 135 |
-
# data = pd.concat([data.drop(N, axis=1), race_encoded_df], axis=1)
|
| 136 |
data = data.drop(columns=['race'])
|
| 137 |
|
| 138 |
data = pca(data)
|
| 139 |
if(hdbscan):
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
data['capital-gain'] = np.log1p(data['capital-gain'])
|
| 144 |
data['capital-loss'] = np.log1p(data['capital-loss'])
|
| 145 |
scaler = joblib.load("robust_scaler.pkl")
|
|
@@ -148,17 +138,6 @@ def cleaning_features(data,race,hdbscan):
|
|
| 148 |
|
| 149 |
return data
|
| 150 |
|
| 151 |
-
# def pca(data):
|
| 152 |
-
# encoder = OneHotEncoder(sparse_output=False)
|
| 153 |
-
# one_hot_encoded = encoder.fit_transform(data[['workclass', 'occupation']])
|
| 154 |
-
# encoded_columns_df = pd.DataFrame(one_hot_encoded, columns=encoder.get_feature_names_out())
|
| 155 |
-
# pca_net = PCA(n_components=10)
|
| 156 |
-
# pca_result_net = pca_net.fit_transform(encoded_columns_df)
|
| 157 |
-
# pca_columns = [f'pca_component_{i+1}' for i in range(10)]
|
| 158 |
-
# pca_df = pd.DataFrame(pca_result_net, columns=pca_columns)
|
| 159 |
-
# data = data.drop(columns=['workclass', 'occupation'], axis=1) #remove the original columns
|
| 160 |
-
# data = pd.concat([data, pca_df], axis=1)
|
| 161 |
-
# return data
|
| 162 |
|
| 163 |
|
| 164 |
def pca(data):
|
|
|
|
| 42 |
return "Income >50K" if prediction == 1 else "Income <=50K"
|
| 43 |
|
| 44 |
def predict_hb(age, workclass, education, occupation, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
columns = {
|
| 47 |
"age": [age], "workclass":[workclass], "educational-num":[education], "occupation":[occupation],
|
|
|
|
| 50 |
df = pd.DataFrame(data=columns)
|
| 51 |
fixed_features = cleaning_features(df,race,True)
|
| 52 |
print(fixed_features)
|
| 53 |
+
# hdb_model = pickle.load(open('hdbscan_model.pkl', 'rb'))
|
| 54 |
+
# prediction = hdb_model.approximate_predict(fixed_features)
|
| 55 |
+
scaler = StandardScaler()
|
| 56 |
+
X = scaler.fit_transform(fixed_features)
|
| 57 |
|
| 58 |
+
clusterer = hdbscan.HDBSCAN(
|
| 59 |
+
min_cluster_size=220,
|
| 60 |
+
min_samples=117,
|
| 61 |
+
metric='euclidean',
|
| 62 |
+
cluster_selection_method='eom',
|
| 63 |
+
prediction_data=True,
|
| 64 |
+
cluster_selection_epsilon=0.28479667859306007
|
| 65 |
+
)
|
| 66 |
|
| 67 |
+
prediction = clusterer.fit_predict(X)
|
| 68 |
+
filename = 'hdbscan_model.pkl'
|
| 69 |
+
pickle.dump(clusterer, open(filename, 'wb'))
|
| 70 |
|
| 71 |
return f"Predicted Cluster (HDBSCAN): {prediction[-1]}"
|
| 72 |
|
|
|
|
| 122 |
data[f'race_{races}'] = 1
|
| 123 |
else:
|
| 124 |
data[f'race_{races}'] = 0
|
| 125 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
data = data.drop(columns=['race'])
|
| 127 |
|
| 128 |
data = pca(data)
|
| 129 |
if(hdbscan):
|
| 130 |
+
df_transformed = pd.read_csv('dataset.csv')
|
| 131 |
+
X = df_transformed.drop('income', axis=1)
|
| 132 |
+
data = pd.concat([X, data], ignore_index=True)
|
| 133 |
data['capital-gain'] = np.log1p(data['capital-gain'])
|
| 134 |
data['capital-loss'] = np.log1p(data['capital-loss'])
|
| 135 |
scaler = joblib.load("robust_scaler.pkl")
|
|
|
|
| 138 |
|
| 139 |
return data
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
|
| 143 |
def pca(data):
|