Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,9 +13,9 @@ from sklearn.decomposition import PCA
|
|
| 13 |
def predict(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
|
| 14 |
features = [age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country]
|
| 15 |
columns = [
|
| 16 |
-
"age", "workclass", "education", "marital_status", "occupation",
|
| 17 |
-
"relationship", "race", "gender", "
|
| 18 |
-
"
|
| 19 |
df = pd.DataFrame(index=features, columns=columns)
|
| 20 |
fixed_features = cleaning_features(df)
|
| 21 |
# prediction = model.predict(features)
|
|
@@ -36,7 +36,7 @@ def cleaning_features(data):
|
|
| 36 |
|
| 37 |
# 2. Label encode gender and income
|
| 38 |
data['gender'] = le.fit_transform(data['gender'])
|
| 39 |
-
data['education-num'] = le.fit_transform(data['education'])
|
| 40 |
|
| 41 |
# 3. One-hot encode race
|
| 42 |
for N in columns_to_encode:
|
|
|
|
| 13 |
def predict(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
|
| 14 |
features = [age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country]
|
| 15 |
columns = [
|
| 16 |
+
"age", "workclass", "education-num", "marital_status", "occupation",
|
| 17 |
+
"relationship", "race", "gender", "capital-gain", "capital-loss",
|
| 18 |
+
"hours-per-week", "native-country"]
|
| 19 |
df = pd.DataFrame(index=features, columns=columns)
|
| 20 |
fixed_features = cleaning_features(df)
|
| 21 |
# prediction = model.predict(features)
|
|
|
|
| 36 |
|
| 37 |
# 2. Label encode gender and income
|
| 38 |
data['gender'] = le.fit_transform(data['gender'])
|
| 39 |
+
data['education-num'] = le.fit_transform(data['education-num'])
|
| 40 |
|
| 41 |
# 3. One-hot encode race
|
| 42 |
for N in columns_to_encode:
|