Spaces:
Running
Running
File size: 11,969 Bytes
540a985 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import gradio as gr
import os
import random
import csv
from pathlib import Path
from datetime import datetime
DATA_DIR = Path("data")
RESULTS_DIR = Path("results")
RESULTS_FILE = RESULTS_DIR / "preferences.csv"
IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".webp"]
# --- Data Loading ---
def find_image(folder_path: Path, base_name: str) -> Path | None:
"""Finds an image file starting with base_name in a folder."""
for ext in IMAGE_EXTENSIONS:
file_path = folder_path / f"{base_name}{ext}"
if file_path.exists():
return file_path
return None
def get_sample_ids() -> list[str]:
"""Scans the data directory for valid sample IDs."""
sample_ids = []
if DATA_DIR.is_dir():
for item in DATA_DIR.iterdir():
if item.is_dir():
# Check if required files exist
prompt_file = item / "prompt.txt"
input_bg = find_image(item, "input_bg")
input_fg = find_image(item, "input_fg")
output_baseline = find_image(item, "baseline")
output_tficon = find_image(item, "tf-icon")
if prompt_file.exists() and input_bg and input_fg and output_baseline and output_tficon:
sample_ids.append(item.name)
return sample_ids
def load_sample_data(sample_id: str) -> dict | None:
"""Loads data for a specific sample ID."""
sample_path = DATA_DIR / sample_id
if not sample_path.is_dir():
return None
prompt_file = sample_path / "prompt.txt"
input_bg_path = find_image(sample_path, "input_bg")
input_fg_path = find_image(sample_path, "input_fg")
output_baseline_path = find_image(sample_path, "baseline")
output_tficon_path = find_image(sample_path, "tf-icon")
if not all([prompt_file.exists(), input_bg_path, input_fg_path, output_baseline_path, output_tficon_path]):
print(f"Warning: Missing files in sample {sample_id}")
return None
try:
prompt = prompt_file.read_text().strip()
except Exception as e:
print(f"Error reading prompt for {sample_id}: {e}")
return None
return {
"id": sample_id,
"prompt": prompt,
"input_bg": str(input_bg_path),
"input_fg": str(input_fg_path),
"output_baseline": str(output_baseline_path),
"output_tficon": str(output_tficon_path),
}
# --- State and UI Logic ---
INITIAL_SAMPLE_IDS = get_sample_ids()
def get_next_sample(available_ids: list[str]) -> tuple[dict | None, list[str]]:
"""Selects a random sample ID from the available list."""
if not available_ids:
return None, []
chosen_id = random.choice(available_ids)
remaining_ids = [id for id in available_ids if id != chosen_id]
sample_data = load_sample_data(chosen_id)
return sample_data, remaining_ids
def display_new_sample(state: dict, available_ids: list[str]):
"""Loads and prepares a new sample for display."""
sample_data, remaining_ids = get_next_sample(available_ids)
if not sample_data:
return {
prompt_display: gr.update(value="No more samples available. Thank you!"),
input_bg_display: gr.update(value=None, visible=False),
input_fg_display: gr.update(value=None, visible=False),
output_a_display: gr.update(value=None, visible=False),
output_b_display: gr.update(value=None, visible=False),
choice_button_a: gr.update(visible=False),
choice_button_b: gr.update(visible=False),
next_button: gr.update(visible=False),
status_display: gr.update(value="Completed!"),
app_state: state,
available_samples_state: remaining_ids
}
outputs = [
{"model_name": "baseline", "path": sample_data["output_baseline"]},
{"model_name": "tf-icon", "path": sample_data["output_tficon"]},
]
random.shuffle(outputs)
output_a = outputs[0]
output_b = outputs[1]
state = {
"current_sample_id": sample_data["id"],
"output_a_model_name": output_a["model_name"],
"output_b_model_name": output_b["model_name"],
}
return {
prompt_display: gr.update(value=f"Prompt: {sample_data['prompt']}"),
input_bg_display: gr.update(value=sample_data["input_bg"], visible=True),
input_fg_display: gr.update(value=sample_data["input_fg"], visible=True),
output_a_display: gr.update(value=output_a["path"], visible=True),
output_b_display: gr.update(value=output_b["path"], visible=True),
choice_button_a: gr.update(visible=True, interactive=True),
choice_button_b: gr.update(visible=True, interactive=True),
next_button: gr.update(visible=False),
status_display: gr.update(value="Please choose the image you prefer."),
app_state: state,
available_samples_state: remaining_ids
}
def record_preference(choice: str, state: dict, request: gr.Request):
"""Records the user's preference and prepares for the next sample."""
if not request: # Add a check if request is None
print("Error: Request object is None. Cannot get session ID.")
session_id = "unknown_session" # Fallback session ID
else:
try:
session_id = request.client.host # Use IP address as a basic session identifier
except AttributeError:
print("Error: request.client is None or has no 'host' attribute.")
session_id = "unknown_client" # Fallback if client object is weird
if not state or "current_sample_id" not in state:
print("Warning: State missing, cannot record preference.")
return {
choice_button_a: gr.update(interactive=False),
choice_button_b: gr.update(interactive=False),
next_button: gr.update(visible=True, interactive=True),
status_display: gr.update(value="Error: Session state lost. Click Next Sample."),
app_state: state # Return unchanged state
}
chosen_model_name = state["output_a_model_name"] if choice == "A" else state["output_b_model_name"]
# Ensure results directory exists
RESULTS_DIR.mkdir(parents=True, exist_ok=True)
# Append result to CSV
file_exists = RESULTS_FILE.exists()
try:
with open(RESULTS_FILE, 'a', newline='', encoding='utf-8') as f:
writer = csv.writer(f)
if not file_exists:
writer.writerow([
"timestamp", "session_id", "sample_id",
"baseline_displayed_as", "tficon_displayed_as",
"chosen_display", "chosen_model_name"
]) # Header
baseline_display = "A" if state["output_a_model_name"] == "baseline" else "B"
tficon_display = "B" if state["output_a_model_name"] == "baseline" else "A"
writer.writerow([
datetime.now().isoformat(),
session_id,
state["current_sample_id"],
baseline_display,
tficon_display,
choice, # A or B
chosen_model_name # baseline or tf-icon
])
except Exception as e:
print(f"Error writing results: {e}")
return {
choice_button_a: gr.update(interactive=False),
choice_button_b: gr.update(interactive=False),
next_button: gr.update(visible=True, interactive=True), # Allow user to continue
status_display: gr.update(value=f"Error saving preference: {e}. Click Next Sample."),
app_state: state
}
# Update UI: disable choice buttons, show next button
return {
choice_button_a: gr.update(interactive=False),
choice_button_b: gr.update(interactive=False),
next_button: gr.update(visible=True, interactive=True),
status_display: gr.update(value=f"Preference recorded (Chose {choice}). Click Next Sample."),
app_state: state # Return unchanged state
}
# --- New Handler Functions ---
def handle_choice_a(state: dict, request: gr.Request):
return record_preference("A", state, request)
def handle_choice_b(state: dict, request: gr.Request):
return record_preference("B", state, request)
# --- Gradio Interface ---
with gr.Blocks(title="Image Composition User Study") as demo:
gr.Markdown("# Image Composition User Study")
gr.Markdown(
"Please look at the input images and the prompt below. "
"Then, compare the two output images (Output A and Output B) and click the button below the one you prefer."
)
# State variables
app_state = gr.State({}) # Stores current sample info (id, output mapping)
# Keep track of samples available *for this session*
available_samples_state = gr.State(INITIAL_SAMPLE_IDS)
# Displays
prompt_display = gr.Textbox(label="Prompt", interactive=False)
status_display = gr.Textbox(label="Status", value="Loading first sample...", interactive=False)
with gr.Row():
input_bg_display = gr.Image(label="Input Background", type="filepath", height=300, width=300, interactive=False)
input_fg_display = gr.Image(label="Input Foreground", type="filepath", height=300, width=300, interactive=False)
gr.Markdown("---")
gr.Markdown("## Choose your preferred output:")
with gr.Row():
with gr.Column():
output_a_display = gr.Image(label="Output A", type="filepath", height=400, width=400, interactive=False)
choice_button_a = gr.Button("Choose Output A", variant="primary")
with gr.Column():
output_b_display = gr.Image(label="Output B", type="filepath", height=400, width=400, interactive=False)
choice_button_b = gr.Button("Choose Output B", variant="primary")
next_button = gr.Button("Next Sample", visible=False)
# --- Event Handlers ---
# Load first sample on page load
demo.load(
fn=display_new_sample,
inputs=[app_state, available_samples_state],
outputs=[
prompt_display, input_bg_display, input_fg_display,
output_a_display, output_b_display,
choice_button_a, choice_button_b, next_button, status_display,
app_state, available_samples_state
]
)
# Handle choice A click - Use the new handler function
choice_button_a.click(
fn=handle_choice_a, # Use the dedicated handler
inputs=[app_state], # Input is still just the state component
outputs=[choice_button_a, choice_button_b, next_button, status_display, app_state],
api_name=False,
)
# Handle choice B click - Use the new handler function
choice_button_b.click(
fn=handle_choice_b, # Use the dedicated handler
inputs=[app_state], # Input is still just the state component
outputs=[choice_button_a, choice_button_b, next_button, status_display, app_state],
api_name=False,
)
# Handle next sample click
next_button.click(
fn=display_new_sample,
inputs=[app_state, available_samples_state],
outputs=[
prompt_display, input_bg_display, input_fg_display,
output_a_display, output_b_display,
choice_button_a, choice_button_b, next_button, status_display,
app_state, available_samples_state
],
api_name=False,
# queue=True
)
if __name__ == "__main__":
if not INITIAL_SAMPLE_IDS:
print("Error: No valid samples found in the 'data' directory.")
print("Please ensure the 'data' directory exists and contains subdirectories")
print("named like 'sample_id', each with 'prompt.txt', 'input_bg.*',")
print("'input_fg.*', 'baseline.*', and 'tf-icon.*' files.")
else:
print(f"Found {len(INITIAL_SAMPLE_IDS)} samples.")
print("Starting Gradio app...")
demo.launch(server_name="0.0.0.0") |