Spaces:
Running
Running
Pushing collected preferences to hf dataset
Browse files- app.py +160 -67
- requirements.txt +3 -1
app.py
CHANGED
@@ -3,17 +3,67 @@ import os
|
|
3 |
import random
|
4 |
import csv
|
5 |
from pathlib import Path
|
6 |
-
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
DATA_DIR = Path("data")
|
9 |
-
RESULTS_DIR = Path("results")
|
10 |
-
RESULTS_FILE = RESULTS_DIR / "preferences.csv"
|
11 |
IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".webp"]
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# --- Data Loading ---
|
14 |
|
15 |
def find_image(folder_path: Path, base_name: str) -> Path | None:
|
16 |
-
"""Finds an image file starting with base_name in a folder."""
|
17 |
for ext in IMAGE_EXTENSIONS:
|
18 |
file_path = folder_path / f"{base_name}{ext}"
|
19 |
if file_path.exists():
|
@@ -21,12 +71,10 @@ def find_image(folder_path: Path, base_name: str) -> Path | None:
|
|
21 |
return None
|
22 |
|
23 |
def get_sample_ids() -> list[str]:
|
24 |
-
"""Scans the data directory for valid sample IDs."""
|
25 |
sample_ids = []
|
26 |
if DATA_DIR.is_dir():
|
27 |
for item in DATA_DIR.iterdir():
|
28 |
if item.is_dir():
|
29 |
-
# Check if required files exist
|
30 |
prompt_file = item / "prompt.txt"
|
31 |
input_bg = find_image(item, "input_bg")
|
32 |
input_fg = find_image(item, "input_fg")
|
@@ -37,7 +85,6 @@ def get_sample_ids() -> list[str]:
|
|
37 |
return sample_ids
|
38 |
|
39 |
def load_sample_data(sample_id: str) -> dict | None:
|
40 |
-
"""Loads data for a specific sample ID."""
|
41 |
sample_path = DATA_DIR / sample_id
|
42 |
if not sample_path.is_dir():
|
43 |
return None
|
@@ -72,7 +119,6 @@ def load_sample_data(sample_id: str) -> dict | None:
|
|
72 |
INITIAL_SAMPLE_IDS = get_sample_ids()
|
73 |
|
74 |
def get_next_sample(available_ids: list[str]) -> tuple[dict | None, list[str]]:
|
75 |
-
"""Selects a random sample ID from the available list."""
|
76 |
if not available_ids:
|
77 |
return None, []
|
78 |
chosen_id = random.choice(available_ids)
|
@@ -80,9 +126,7 @@ def get_next_sample(available_ids: list[str]) -> tuple[dict | None, list[str]]:
|
|
80 |
sample_data = load_sample_data(chosen_id)
|
81 |
return sample_data, remaining_ids
|
82 |
|
83 |
-
|
84 |
def display_new_sample(state: dict, available_ids: list[str]):
|
85 |
-
"""Loads and prepares a new sample for display."""
|
86 |
sample_data, remaining_ids = get_next_sample(available_ids)
|
87 |
|
88 |
if not sample_data:
|
@@ -129,16 +173,15 @@ def display_new_sample(state: dict, available_ids: list[str]):
|
|
129 |
}
|
130 |
|
131 |
def record_preference(choice: str, state: dict, request: gr.Request):
|
132 |
-
|
133 |
-
if not request: # Add a check if request is None
|
134 |
print("Error: Request object is None. Cannot get session ID.")
|
135 |
-
session_id = "unknown_session"
|
136 |
else:
|
137 |
try:
|
138 |
-
session_id = request.client.host
|
139 |
except AttributeError:
|
140 |
-
|
141 |
-
|
142 |
|
143 |
if not state or "current_sample_id" not in state:
|
144 |
print("Warning: State missing, cannot record preference.")
|
@@ -147,67 +190,97 @@ def record_preference(choice: str, state: dict, request: gr.Request):
|
|
147 |
choice_button_b: gr.update(interactive=False),
|
148 |
next_button: gr.update(visible=True, interactive=True),
|
149 |
status_display: gr.update(value="Error: Session state lost. Click Next Sample."),
|
150 |
-
app_state: state
|
151 |
}
|
152 |
|
153 |
chosen_model_name = state["output_a_model_name"] if choice == "A" else state["output_b_model_name"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
# Ensure results directory exists
|
156 |
-
RESULTS_DIR.mkdir(parents=True, exist_ok=True)
|
157 |
-
|
158 |
-
# Append result to CSV
|
159 |
-
file_exists = RESULTS_FILE.exists()
|
160 |
try:
|
161 |
-
with
|
162 |
-
|
163 |
-
if
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
writer.writerow([
|
174 |
-
datetime.now().isoformat(),
|
175 |
-
session_id,
|
176 |
-
state["current_sample_id"],
|
177 |
-
baseline_display,
|
178 |
-
tficon_display,
|
179 |
-
choice, # A or B
|
180 |
-
chosen_model_name # baseline or tf-icon
|
181 |
-
])
|
182 |
except Exception as e:
|
183 |
-
print(f"Error writing results: {e}")
|
184 |
return {
|
185 |
choice_button_a: gr.update(interactive=False),
|
186 |
choice_button_b: gr.update(interactive=False),
|
187 |
-
next_button: gr.update(visible=True, interactive=True),
|
188 |
-
status_display: gr.update(value=f"Error saving preference: {e}. Click Next
|
189 |
app_state: state
|
190 |
}
|
191 |
|
192 |
-
|
193 |
-
# Update UI: disable choice buttons, show next button
|
194 |
return {
|
195 |
choice_button_a: gr.update(interactive=False),
|
196 |
choice_button_b: gr.update(interactive=False),
|
197 |
next_button: gr.update(visible=True, interactive=True),
|
198 |
status_display: gr.update(value=f"Preference recorded (Chose {choice}). Click Next Sample."),
|
199 |
-
app_state: state
|
200 |
}
|
201 |
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
def handle_choice_a(state: dict, request: gr.Request):
|
204 |
return record_preference("A", state, request)
|
205 |
|
206 |
def handle_choice_b(state: dict, request: gr.Request):
|
207 |
return record_preference("B", state, request)
|
208 |
|
209 |
-
# --- Gradio Interface ---
|
210 |
-
|
211 |
with gr.Blocks(title="Image Composition User Study") as demo:
|
212 |
gr.Markdown("# Image Composition User Study")
|
213 |
gr.Markdown(
|
@@ -215,12 +288,9 @@ with gr.Blocks(title="Image Composition User Study") as demo:
|
|
215 |
"Then, compare the two output images (Output A and Output B) and click the button below the one you prefer."
|
216 |
)
|
217 |
|
218 |
-
|
219 |
-
app_state = gr.State({}) # Stores current sample info (id, output mapping)
|
220 |
-
# Keep track of samples available *for this session*
|
221 |
available_samples_state = gr.State(INITIAL_SAMPLE_IDS)
|
222 |
|
223 |
-
# Displays
|
224 |
prompt_display = gr.Textbox(label="Prompt", interactive=False)
|
225 |
status_display = gr.Textbox(label="Status", value="Loading first sample...", interactive=False)
|
226 |
|
@@ -241,9 +311,6 @@ with gr.Blocks(title="Image Composition User Study") as demo:
|
|
241 |
|
242 |
next_button = gr.Button("Next Sample", visible=False)
|
243 |
|
244 |
-
# --- Event Handlers ---
|
245 |
-
|
246 |
-
# Load first sample on page load
|
247 |
demo.load(
|
248 |
fn=display_new_sample,
|
249 |
inputs=[app_state, available_samples_state],
|
@@ -255,23 +322,20 @@ with gr.Blocks(title="Image Composition User Study") as demo:
|
|
255 |
]
|
256 |
)
|
257 |
|
258 |
-
# Handle choice A click - Use the new handler function
|
259 |
choice_button_a.click(
|
260 |
-
fn=handle_choice_a,
|
261 |
-
inputs=[app_state],
|
262 |
outputs=[choice_button_a, choice_button_b, next_button, status_display, app_state],
|
263 |
api_name=False,
|
264 |
)
|
265 |
|
266 |
-
# Handle choice B click - Use the new handler function
|
267 |
choice_button_b.click(
|
268 |
-
fn=handle_choice_b,
|
269 |
-
inputs=[app_state],
|
270 |
outputs=[choice_button_a, choice_button_b, next_button, status_display, app_state],
|
271 |
api_name=False,
|
272 |
)
|
273 |
|
274 |
-
# Handle next sample click
|
275 |
next_button.click(
|
276 |
fn=display_new_sample,
|
277 |
inputs=[app_state, available_samples_state],
|
@@ -282,16 +346,45 @@ with gr.Blocks(title="Image Composition User Study") as demo:
|
|
282 |
app_state, available_samples_state
|
283 |
],
|
284 |
api_name=False,
|
285 |
-
# queue=True
|
286 |
)
|
287 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
if __name__ == "__main__":
|
|
|
|
|
289 |
if not INITIAL_SAMPLE_IDS:
|
290 |
print("Error: No valid samples found in the 'data' directory.")
|
291 |
print("Please ensure the 'data' directory exists and contains subdirectories")
|
292 |
print("named like 'sample_id', each with 'prompt.txt', 'input_bg.*',")
|
293 |
print("'input_fg.*', 'baseline.*', and 'tf-icon.*' files.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
else:
|
|
|
295 |
print(f"Found {len(INITIAL_SAMPLE_IDS)} samples.")
|
296 |
print("Starting Gradio app...")
|
297 |
demo.launch(server_name="0.0.0.0")
|
|
|
3 |
import random
|
4 |
import csv
|
5 |
from pathlib import Path
|
6 |
+
from datetime import datetime, timedelta
|
7 |
+
import tempfile
|
8 |
+
from huggingface_hub import HfApi, hf_hub_download, login
|
9 |
+
from huggingface_hub.utils import RepositoryNotFoundError, EntryNotFoundError
|
10 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
11 |
+
import atexit
|
12 |
+
import threading
|
13 |
+
import time
|
14 |
+
import shutil
|
15 |
+
|
16 |
+
# --- Configuration ---
|
17 |
+
DATASET_REPO_ID = os.getenv("DATASET_REPO_ID", "matsant01/user-study-collected-preferences")
|
18 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
19 |
+
RESULTS_FILENAME_IN_REPO = "preferences.csv"
|
20 |
+
TEMP_DIR = tempfile.mkdtemp()
|
21 |
+
LOCAL_RESULTS_FILE = Path(TEMP_DIR) / RESULTS_FILENAME_IN_REPO
|
22 |
+
UPLOAD_INTERVAL_HOURS = 0.1
|
23 |
|
24 |
DATA_DIR = Path("data")
|
|
|
|
|
25 |
IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".webp"]
|
26 |
|
27 |
+
# --- Global State for Upload Logic ---
|
28 |
+
hf_api = None
|
29 |
+
scheduler = BackgroundScheduler(daemon=True)
|
30 |
+
upload_lock = threading.Lock()
|
31 |
+
new_preferences_recorded_since_last_upload = threading.Event()
|
32 |
+
|
33 |
+
# --- Hugging Face Hub Login & Initialization ---
|
34 |
+
def initialize_hub_and_results():
|
35 |
+
global hf_api
|
36 |
+
if HF_TOKEN:
|
37 |
+
print("Logging into Hugging Face Hub...")
|
38 |
+
try:
|
39 |
+
login(token=HF_TOKEN)
|
40 |
+
hf_api = HfApi()
|
41 |
+
print(f"Attempting initial download of {RESULTS_FILENAME_IN_REPO} from {DATASET_REPO_ID}")
|
42 |
+
hf_hub_download(
|
43 |
+
repo_id=DATASET_REPO_ID,
|
44 |
+
filename=RESULTS_FILENAME_IN_REPO,
|
45 |
+
repo_type="dataset",
|
46 |
+
token=HF_TOKEN,
|
47 |
+
local_dir=TEMP_DIR,
|
48 |
+
local_dir_use_symlinks=False
|
49 |
+
)
|
50 |
+
print(f"Successfully downloaded existing {RESULTS_FILENAME_IN_REPO} to {LOCAL_RESULTS_FILE}")
|
51 |
+
except EntryNotFoundError:
|
52 |
+
print(f"{RESULTS_FILENAME_IN_REPO} not found in repo. Will create locally.")
|
53 |
+
except RepositoryNotFoundError:
|
54 |
+
print(f"Error: Dataset repository {DATASET_REPO_ID} not found or token lacks permissions.")
|
55 |
+
print("Results saving will be disabled.")
|
56 |
+
hf_api = None
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error during initial download/login: {e}")
|
59 |
+
print("Proceeding without initial download. File will be created locally.")
|
60 |
+
else:
|
61 |
+
print("Warning: HF_TOKEN secret not found. Results will not be saved to the Hub.")
|
62 |
+
hf_api = None
|
63 |
+
|
64 |
# --- Data Loading ---
|
65 |
|
66 |
def find_image(folder_path: Path, base_name: str) -> Path | None:
|
|
|
67 |
for ext in IMAGE_EXTENSIONS:
|
68 |
file_path = folder_path / f"{base_name}{ext}"
|
69 |
if file_path.exists():
|
|
|
71 |
return None
|
72 |
|
73 |
def get_sample_ids() -> list[str]:
|
|
|
74 |
sample_ids = []
|
75 |
if DATA_DIR.is_dir():
|
76 |
for item in DATA_DIR.iterdir():
|
77 |
if item.is_dir():
|
|
|
78 |
prompt_file = item / "prompt.txt"
|
79 |
input_bg = find_image(item, "input_bg")
|
80 |
input_fg = find_image(item, "input_fg")
|
|
|
85 |
return sample_ids
|
86 |
|
87 |
def load_sample_data(sample_id: str) -> dict | None:
|
|
|
88 |
sample_path = DATA_DIR / sample_id
|
89 |
if not sample_path.is_dir():
|
90 |
return None
|
|
|
119 |
INITIAL_SAMPLE_IDS = get_sample_ids()
|
120 |
|
121 |
def get_next_sample(available_ids: list[str]) -> tuple[dict | None, list[str]]:
|
|
|
122 |
if not available_ids:
|
123 |
return None, []
|
124 |
chosen_id = random.choice(available_ids)
|
|
|
126 |
sample_data = load_sample_data(chosen_id)
|
127 |
return sample_data, remaining_ids
|
128 |
|
|
|
129 |
def display_new_sample(state: dict, available_ids: list[str]):
|
|
|
130 |
sample_data, remaining_ids = get_next_sample(available_ids)
|
131 |
|
132 |
if not sample_data:
|
|
|
173 |
}
|
174 |
|
175 |
def record_preference(choice: str, state: dict, request: gr.Request):
|
176 |
+
if not request:
|
|
|
177 |
print("Error: Request object is None. Cannot get session ID.")
|
178 |
+
session_id = "unknown_session"
|
179 |
else:
|
180 |
try:
|
181 |
+
session_id = request.client.host
|
182 |
except AttributeError:
|
183 |
+
print("Error: request.client is None or has no 'host' attribute.")
|
184 |
+
session_id = "unknown_client"
|
185 |
|
186 |
if not state or "current_sample_id" not in state:
|
187 |
print("Warning: State missing, cannot record preference.")
|
|
|
190 |
choice_button_b: gr.update(interactive=False),
|
191 |
next_button: gr.update(visible=True, interactive=True),
|
192 |
status_display: gr.update(value="Error: Session state lost. Click Next Sample."),
|
193 |
+
app_state: state
|
194 |
}
|
195 |
|
196 |
chosen_model_name = state["output_a_model_name"] if choice == "A" else state["output_b_model_name"]
|
197 |
+
baseline_display = "A" if state["output_a_model_name"] == "baseline" else "B"
|
198 |
+
tficon_display = "B" if state["output_a_model_name"] == "baseline" else "A"
|
199 |
+
|
200 |
+
new_row = {
|
201 |
+
"timestamp": datetime.now().isoformat(),
|
202 |
+
"session_id": session_id,
|
203 |
+
"sample_id": state["current_sample_id"],
|
204 |
+
"baseline_displayed_as": baseline_display,
|
205 |
+
"tficon_displayed_as": tficon_display,
|
206 |
+
"chosen_display": choice,
|
207 |
+
"chosen_model_name": chosen_model_name
|
208 |
+
}
|
209 |
+
header = list(new_row.keys())
|
210 |
|
|
|
|
|
|
|
|
|
|
|
211 |
try:
|
212 |
+
with upload_lock:
|
213 |
+
file_exists = LOCAL_RESULTS_FILE.exists()
|
214 |
+
mode = 'a' if file_exists else 'w'
|
215 |
+
with open(LOCAL_RESULTS_FILE, mode, newline='', encoding='utf-8') as f:
|
216 |
+
writer = csv.DictWriter(f, fieldnames=header)
|
217 |
+
if not file_exists or os.path.getsize(LOCAL_RESULTS_FILE) == 0:
|
218 |
+
writer.writeheader()
|
219 |
+
print(f"Created or wrote header to {LOCAL_RESULTS_FILE}")
|
220 |
+
writer.writerow(new_row)
|
221 |
+
print(f"Appended preference for {state['current_sample_id']} to local file.")
|
222 |
+
new_preferences_recorded_since_last_upload.set()
|
223 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
except Exception as e:
|
225 |
+
print(f"Error writing local results file {LOCAL_RESULTS_FILE}: {e}")
|
226 |
return {
|
227 |
choice_button_a: gr.update(interactive=False),
|
228 |
choice_button_b: gr.update(interactive=False),
|
229 |
+
next_button: gr.update(visible=True, interactive=True),
|
230 |
+
status_display: gr.update(value=f"Error saving preference locally: {e}. Click Next."),
|
231 |
app_state: state
|
232 |
}
|
233 |
|
|
|
|
|
234 |
return {
|
235 |
choice_button_a: gr.update(interactive=False),
|
236 |
choice_button_b: gr.update(interactive=False),
|
237 |
next_button: gr.update(visible=True, interactive=True),
|
238 |
status_display: gr.update(value=f"Preference recorded (Chose {choice}). Click Next Sample."),
|
239 |
+
app_state: state
|
240 |
}
|
241 |
|
242 |
+
def upload_preferences_to_hub():
|
243 |
+
print("Periodic upload check triggered.")
|
244 |
+
if not hf_api:
|
245 |
+
print("Upload check skipped: Hugging Face API not available.")
|
246 |
+
return
|
247 |
+
|
248 |
+
if not new_preferences_recorded_since_last_upload.is_set():
|
249 |
+
print("Upload check skipped: No new preferences recorded since last upload.")
|
250 |
+
return
|
251 |
+
|
252 |
+
with upload_lock:
|
253 |
+
if not new_preferences_recorded_since_last_upload.is_set():
|
254 |
+
print("Upload check skipped (race condition avoided): No new preferences.")
|
255 |
+
return
|
256 |
+
|
257 |
+
if not LOCAL_RESULTS_FILE.exists() or os.path.getsize(LOCAL_RESULTS_FILE) == 0:
|
258 |
+
print("Upload check skipped: Local results file is missing or empty.")
|
259 |
+
new_preferences_recorded_since_last_upload.clear()
|
260 |
+
return
|
261 |
+
|
262 |
+
try:
|
263 |
+
print(f"Attempting to upload {LOCAL_RESULTS_FILE} to {DATASET_REPO_ID}/{RESULTS_FILENAME_IN_REPO}")
|
264 |
+
start_time = time.time()
|
265 |
+
hf_api.upload_file(
|
266 |
+
path_or_fileobj=str(LOCAL_RESULTS_FILE),
|
267 |
+
path_in_repo=RESULTS_FILENAME_IN_REPO,
|
268 |
+
repo_id=DATASET_REPO_ID,
|
269 |
+
repo_type="dataset",
|
270 |
+
commit_message=f"Periodic upload of preferences - {datetime.now().isoformat()}"
|
271 |
+
)
|
272 |
+
end_time = time.time()
|
273 |
+
print(f"Successfully uploaded preferences. Took {end_time - start_time:.2f} seconds.")
|
274 |
+
new_preferences_recorded_since_last_upload.clear()
|
275 |
+
except Exception as e:
|
276 |
+
print(f"Error uploading results file: {e}")
|
277 |
+
|
278 |
def handle_choice_a(state: dict, request: gr.Request):
|
279 |
return record_preference("A", state, request)
|
280 |
|
281 |
def handle_choice_b(state: dict, request: gr.Request):
|
282 |
return record_preference("B", state, request)
|
283 |
|
|
|
|
|
284 |
with gr.Blocks(title="Image Composition User Study") as demo:
|
285 |
gr.Markdown("# Image Composition User Study")
|
286 |
gr.Markdown(
|
|
|
288 |
"Then, compare the two output images (Output A and Output B) and click the button below the one you prefer."
|
289 |
)
|
290 |
|
291 |
+
app_state = gr.State({})
|
|
|
|
|
292 |
available_samples_state = gr.State(INITIAL_SAMPLE_IDS)
|
293 |
|
|
|
294 |
prompt_display = gr.Textbox(label="Prompt", interactive=False)
|
295 |
status_display = gr.Textbox(label="Status", value="Loading first sample...", interactive=False)
|
296 |
|
|
|
311 |
|
312 |
next_button = gr.Button("Next Sample", visible=False)
|
313 |
|
|
|
|
|
|
|
314 |
demo.load(
|
315 |
fn=display_new_sample,
|
316 |
inputs=[app_state, available_samples_state],
|
|
|
322 |
]
|
323 |
)
|
324 |
|
|
|
325 |
choice_button_a.click(
|
326 |
+
fn=handle_choice_a,
|
327 |
+
inputs=[app_state],
|
328 |
outputs=[choice_button_a, choice_button_b, next_button, status_display, app_state],
|
329 |
api_name=False,
|
330 |
)
|
331 |
|
|
|
332 |
choice_button_b.click(
|
333 |
+
fn=handle_choice_b,
|
334 |
+
inputs=[app_state],
|
335 |
outputs=[choice_button_a, choice_button_b, next_button, status_display, app_state],
|
336 |
api_name=False,
|
337 |
)
|
338 |
|
|
|
339 |
next_button.click(
|
340 |
fn=display_new_sample,
|
341 |
inputs=[app_state, available_samples_state],
|
|
|
346 |
app_state, available_samples_state
|
347 |
],
|
348 |
api_name=False,
|
|
|
349 |
)
|
350 |
|
351 |
+
def cleanup_temp_dir():
|
352 |
+
if Path(TEMP_DIR).exists():
|
353 |
+
print(f"Cleaning up temporary directory: {TEMP_DIR}")
|
354 |
+
shutil.rmtree(TEMP_DIR, ignore_errors=True)
|
355 |
+
|
356 |
+
def shutdown_hook():
|
357 |
+
print("Application shutting down. Performing final upload check...")
|
358 |
+
upload_preferences_to_hub()
|
359 |
+
if scheduler.running:
|
360 |
+
print("Shutting down scheduler...")
|
361 |
+
scheduler.shutdown(wait=False)
|
362 |
+
cleanup_temp_dir()
|
363 |
+
print("Shutdown complete.")
|
364 |
+
|
365 |
+
atexit.register(shutdown_hook)
|
366 |
+
|
367 |
if __name__ == "__main__":
|
368 |
+
initialize_hub_and_results()
|
369 |
+
|
370 |
if not INITIAL_SAMPLE_IDS:
|
371 |
print("Error: No valid samples found in the 'data' directory.")
|
372 |
print("Please ensure the 'data' directory exists and contains subdirectories")
|
373 |
print("named like 'sample_id', each with 'prompt.txt', 'input_bg.*',")
|
374 |
print("'input_fg.*', 'baseline.*', and 'tf-icon.*' files.")
|
375 |
+
elif not DATASET_REPO_ID:
|
376 |
+
print("Error: DATASET_REPO_ID environment variable is not set or is set to the default placeholder.")
|
377 |
+
print("Please set the DATASET_REPO_ID environment variable or update the script.")
|
378 |
+
elif hf_api:
|
379 |
+
print(f"Starting periodic upload scheduler (every {UPLOAD_INTERVAL_HOURS} hours)...")
|
380 |
+
scheduler.add_job(upload_preferences_to_hub, 'interval', hours=UPLOAD_INTERVAL_HOURS)
|
381 |
+
scheduler.start()
|
382 |
+
print(f"Found {len(INITIAL_SAMPLE_IDS)} samples.")
|
383 |
+
print(f"Configured to save results periodically to Hugging Face Dataset: {DATASET_REPO_ID}")
|
384 |
+
print("Starting Gradio app...")
|
385 |
+
demo.launch(server_name="0.0.0.0")
|
386 |
else:
|
387 |
+
print("Warning: Running without Hugging Face Hub integration (HF_TOKEN or DATASET_REPO_ID missing/invalid).")
|
388 |
print(f"Found {len(INITIAL_SAMPLE_IDS)} samples.")
|
389 |
print("Starting Gradio app...")
|
390 |
demo.launch(server_name="0.0.0.0")
|
requirements.txt
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
gradio
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
huggingface_hub
|
3 |
+
apscheduler # Added for periodic tasks
|