import os import datasets import pandas as pd from datetime import datetime from config import BACKUP_FOLDER, HF_DATASET_REPO_ID, HF_TOKEN, RESULTS_CSV_FILE, CSV_HEADERS def main(): """ Gets the dataset from HF Hub where preferences are being collected, save it locally to a backup folder with a timestamp. Then creates an empty dataset with the same structure and saves it to the HF Hub. """ print(f"Attempting to load dataset '{HF_DATASET_REPO_ID}' from Hugging Face Hub (file: {RESULTS_CSV_FILE})...") dataset = datasets.load_dataset(HF_DATASET_REPO_ID, data_files=RESULTS_CSV_FILE, token=HF_TOKEN, split='train') print(f"Successfully loaded dataset. It has {len(dataset)} entries.") dataset_df = dataset.to_pandas() # 2. Save it locally to a backup folder with a timestamp if not os.path.exists(BACKUP_FOLDER): os.makedirs(BACKUP_FOLDER) print(f"Created backup folder: {BACKUP_FOLDER}") timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") backup_filename = f"preferences_backup_{timestamp}.csv" backup_filepath = os.path.join(BACKUP_FOLDER, backup_filename) try: dataset_df.to_csv(backup_filepath, index=False) print(f"Successfully backed up current preferences to: {backup_filepath}") except Exception as e: print(f"Error saving backup to {backup_filepath}: {e}") if __name__ == "__main__": main()