Spaces:
Running
Running
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .dockerignore +213 -0
- .gitattributes +4 -35
- .github/ISSUE_TEMPLATE/bug-report.md +55 -0
- .github/ISSUE_TEMPLATE/feature-request.md +27 -0
- .github/ISSUE_TEMPLATE/question.md +13 -0
- .github/dependabot.yml +12 -0
- .github/workflows/ci-testing.yml +80 -0
- .github/workflows/codeql-analysis.yml +54 -0
- .github/workflows/greetings.yml +56 -0
- .github/workflows/rebase.yml +21 -0
- .github/workflows/stale.yml +18 -0
- .gitignore +249 -0
- Dockerfile +60 -0
- LICENSE +674 -0
- README.md +37 -7
- app.py +39 -0
- data/coco128.yaml +28 -0
- data/crowdhuman.yaml +8 -0
- data/hyp.finetune.yaml +38 -0
- data/hyp.scratch.yaml +33 -0
- data/images/bus.jpg +0 -0
- data/images/zidane.jpg +0 -0
- data/scripts/get_coco.sh +27 -0
- data/scripts/get_voc.sh +139 -0
- data/voc.yaml +21 -0
- detect.py +200 -0
- hubconf.py +146 -0
- models/__init__.py +0 -0
- models/__pycache__/__init__.cpython-310.pyc +0 -0
- models/__pycache__/common.cpython-310.pyc +0 -0
- models/__pycache__/experimental.cpython-310.pyc +0 -0
- models/__pycache__/yolo.cpython-310.pyc +0 -0
- models/common.py +308 -0
- models/experimental.py +133 -0
- models/export.py +100 -0
- models/hub/anchors.yaml +58 -0
- models/hub/yolov3-spp.yaml +51 -0
- models/hub/yolov3-tiny.yaml +41 -0
- models/hub/yolov3.yaml +51 -0
- models/hub/yolov5-fpn.yaml +42 -0
- models/hub/yolov5-p2.yaml +54 -0
- models/hub/yolov5-p6.yaml +56 -0
- models/hub/yolov5-p7.yaml +67 -0
- models/hub/yolov5-panet.yaml +48 -0
- models/hub/yolov5l6.yaml +60 -0
- models/hub/yolov5m6.yaml +60 -0
- models/hub/yolov5s6.yaml +60 -0
- models/hub/yolov5x6.yaml +60 -0
- models/yolo.py +272 -0
- models/yolov5l.yaml +48 -0
.dockerignore
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
|
2 |
+
#.git
|
3 |
+
.cache
|
4 |
+
.idea
|
5 |
+
output
|
6 |
+
coco
|
7 |
+
storage.googleapis.com
|
8 |
+
|
9 |
+
data/samples/*
|
10 |
+
**/results*.txt
|
11 |
+
*.jpg
|
12 |
+
|
13 |
+
# Neural Network weights -----------------------------------------------------------------------------------------------
|
14 |
+
**/*.pth
|
15 |
+
**/*.onnx
|
16 |
+
**/*.mlmodel
|
17 |
+
**/*.torchscript
|
18 |
+
|
19 |
+
|
20 |
+
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
21 |
+
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
22 |
+
|
23 |
+
|
24 |
+
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
|
25 |
+
# Byte-compiled / optimized / DLL files
|
26 |
+
__pycache__/
|
27 |
+
*.py[cod]
|
28 |
+
*$py.class
|
29 |
+
|
30 |
+
# C extensions
|
31 |
+
*.so
|
32 |
+
|
33 |
+
# Distribution / packaging
|
34 |
+
.Python
|
35 |
+
env/
|
36 |
+
build/
|
37 |
+
develop-eggs/
|
38 |
+
dist/
|
39 |
+
downloads/
|
40 |
+
eggs/
|
41 |
+
.eggs/
|
42 |
+
lib/
|
43 |
+
lib64/
|
44 |
+
parts/
|
45 |
+
sdist/
|
46 |
+
var/
|
47 |
+
wheels/
|
48 |
+
*.egg-info/
|
49 |
+
wandb/
|
50 |
+
.installed.cfg
|
51 |
+
*.egg
|
52 |
+
|
53 |
+
# PyInstaller
|
54 |
+
# Usually these files are written by a python script from a template
|
55 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
56 |
+
*.manifest
|
57 |
+
*.spec
|
58 |
+
|
59 |
+
# Installer logs
|
60 |
+
pip-log.txt
|
61 |
+
pip-delete-this-directory.txt
|
62 |
+
|
63 |
+
# Unit test / coverage reports
|
64 |
+
htmlcov/
|
65 |
+
.tox/
|
66 |
+
.coverage
|
67 |
+
.coverage.*
|
68 |
+
.cache
|
69 |
+
nosetests.xml
|
70 |
+
coverage.xml
|
71 |
+
*.cover
|
72 |
+
.hypothesis/
|
73 |
+
|
74 |
+
# Translations
|
75 |
+
*.mo
|
76 |
+
*.pot
|
77 |
+
|
78 |
+
# Django stuff:
|
79 |
+
*.log
|
80 |
+
local_settings.py
|
81 |
+
|
82 |
+
# Flask stuff:
|
83 |
+
instance/
|
84 |
+
.webassets-cache
|
85 |
+
|
86 |
+
# Scrapy stuff:
|
87 |
+
.scrapy
|
88 |
+
|
89 |
+
# Sphinx documentation
|
90 |
+
docs/_build/
|
91 |
+
|
92 |
+
# PyBuilder
|
93 |
+
target/
|
94 |
+
|
95 |
+
# Jupyter Notebook
|
96 |
+
.ipynb_checkpoints
|
97 |
+
|
98 |
+
# pyenv
|
99 |
+
.python-version
|
100 |
+
|
101 |
+
# celery beat schedule file
|
102 |
+
celerybeat-schedule
|
103 |
+
|
104 |
+
# SageMath parsed files
|
105 |
+
*.sage.py
|
106 |
+
|
107 |
+
# dotenv
|
108 |
+
.env
|
109 |
+
|
110 |
+
# virtualenv
|
111 |
+
.venv*
|
112 |
+
venv*/
|
113 |
+
ENV*/
|
114 |
+
|
115 |
+
# Spyder project settings
|
116 |
+
.spyderproject
|
117 |
+
.spyproject
|
118 |
+
|
119 |
+
# Rope project settings
|
120 |
+
.ropeproject
|
121 |
+
|
122 |
+
# mkdocs documentation
|
123 |
+
/site
|
124 |
+
|
125 |
+
# mypy
|
126 |
+
.mypy_cache/
|
127 |
+
|
128 |
+
|
129 |
+
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
|
130 |
+
|
131 |
+
# General
|
132 |
+
.DS_Store
|
133 |
+
.AppleDouble
|
134 |
+
.LSOverride
|
135 |
+
|
136 |
+
# Icon must end with two \r
|
137 |
+
Icon
|
138 |
+
Icon?
|
139 |
+
|
140 |
+
# Thumbnails
|
141 |
+
._*
|
142 |
+
|
143 |
+
# Files that might appear in the root of a volume
|
144 |
+
.DocumentRevisions-V100
|
145 |
+
.fseventsd
|
146 |
+
.Spotlight-V100
|
147 |
+
.TemporaryItems
|
148 |
+
.Trashes
|
149 |
+
.VolumeIcon.icns
|
150 |
+
.com.apple.timemachine.donotpresent
|
151 |
+
|
152 |
+
# Directories potentially created on remote AFP share
|
153 |
+
.AppleDB
|
154 |
+
.AppleDesktop
|
155 |
+
Network Trash Folder
|
156 |
+
Temporary Items
|
157 |
+
.apdisk
|
158 |
+
|
159 |
+
|
160 |
+
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
|
161 |
+
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
|
162 |
+
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
163 |
+
|
164 |
+
# User-specific stuff:
|
165 |
+
.idea/*
|
166 |
+
.idea/**/workspace.xml
|
167 |
+
.idea/**/tasks.xml
|
168 |
+
.idea/dictionaries
|
169 |
+
.html # Bokeh Plots
|
170 |
+
.pg # TensorFlow Frozen Graphs
|
171 |
+
.avi # videos
|
172 |
+
|
173 |
+
# Sensitive or high-churn files:
|
174 |
+
.idea/**/dataSources/
|
175 |
+
.idea/**/dataSources.ids
|
176 |
+
.idea/**/dataSources.local.xml
|
177 |
+
.idea/**/sqlDataSources.xml
|
178 |
+
.idea/**/dynamic.xml
|
179 |
+
.idea/**/uiDesigner.xml
|
180 |
+
|
181 |
+
# Gradle:
|
182 |
+
.idea/**/gradle.xml
|
183 |
+
.idea/**/libraries
|
184 |
+
|
185 |
+
# CMake
|
186 |
+
cmake-build-debug/
|
187 |
+
cmake-build-release/
|
188 |
+
|
189 |
+
# Mongo Explorer plugin:
|
190 |
+
.idea/**/mongoSettings.xml
|
191 |
+
|
192 |
+
## File-based project format:
|
193 |
+
*.iws
|
194 |
+
|
195 |
+
## Plugin-specific files:
|
196 |
+
|
197 |
+
# IntelliJ
|
198 |
+
out/
|
199 |
+
|
200 |
+
# mpeltonen/sbt-idea plugin
|
201 |
+
.idea_modules/
|
202 |
+
|
203 |
+
# JIRA plugin
|
204 |
+
atlassian-ide-plugin.xml
|
205 |
+
|
206 |
+
# Cursive Clojure plugin
|
207 |
+
.idea/replstate.xml
|
208 |
+
|
209 |
+
# Crashlytics plugin (for Android Studio and IntelliJ)
|
210 |
+
com_crashlytics_export_strings.xml
|
211 |
+
crashlytics.properties
|
212 |
+
crashlytics-build.properties
|
213 |
+
fabric.properties
|
.gitattributes
CHANGED
@@ -1,35 +1,4 @@
|
|
1 |
-
|
2 |
-
*.
|
3 |
-
|
4 |
-
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
# this drop notebooks from GitHub language stats
|
2 |
+
*.ipynb linguist-vendored
|
3 |
+
runs/detect/exp14/Rishikesh_Satsangs_Aakash_Ganga_Audience_Long_shot_from_the_back-scaled.jpeg filter=lfs diff=lfs merge=lfs -text
|
4 |
+
weights/crowdhuman_yolov5m.pt filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.github/ISSUE_TEMPLATE/bug-report.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "🐛 Bug report"
|
3 |
+
about: Create a report to help us improve
|
4 |
+
title: ''
|
5 |
+
labels: bug
|
6 |
+
assignees: ''
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
Before submitting a bug report, please be aware that your issue **must be reproducible** with all of the following, otherwise it is non-actionable, and we can not help you:
|
11 |
+
- **Current repo**: run `git fetch && git status -uno` to check and `git pull` to update repo
|
12 |
+
- **Common dataset**: coco.yaml or coco128.yaml
|
13 |
+
- **Common environment**: Colab, Google Cloud, or Docker image. See https://github.com/ultralytics/yolov5#environments
|
14 |
+
|
15 |
+
If this is a custom dataset/training question you **must include** your `train*.jpg`, `test*.jpg` and `results.png` figures, or we can not help you. You can generate these with `utils.plot_results()`.
|
16 |
+
|
17 |
+
|
18 |
+
## 🐛 Bug
|
19 |
+
A clear and concise description of what the bug is.
|
20 |
+
|
21 |
+
|
22 |
+
## To Reproduce (REQUIRED)
|
23 |
+
|
24 |
+
Input:
|
25 |
+
```
|
26 |
+
import torch
|
27 |
+
|
28 |
+
a = torch.tensor([5])
|
29 |
+
c = a / 0
|
30 |
+
```
|
31 |
+
|
32 |
+
Output:
|
33 |
+
```
|
34 |
+
Traceback (most recent call last):
|
35 |
+
File "/Users/glennjocher/opt/anaconda3/envs/env1/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3331, in run_code
|
36 |
+
exec(code_obj, self.user_global_ns, self.user_ns)
|
37 |
+
File "<ipython-input-5-be04c762b799>", line 5, in <module>
|
38 |
+
c = a / 0
|
39 |
+
RuntimeError: ZeroDivisionError
|
40 |
+
```
|
41 |
+
|
42 |
+
|
43 |
+
## Expected behavior
|
44 |
+
A clear and concise description of what you expected to happen.
|
45 |
+
|
46 |
+
|
47 |
+
## Environment
|
48 |
+
If applicable, add screenshots to help explain your problem.
|
49 |
+
|
50 |
+
- OS: [e.g. Ubuntu]
|
51 |
+
- GPU [e.g. 2080 Ti]
|
52 |
+
|
53 |
+
|
54 |
+
## Additional context
|
55 |
+
Add any other context about the problem here.
|
.github/ISSUE_TEMPLATE/feature-request.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "🚀 Feature request"
|
3 |
+
about: Suggest an idea for this project
|
4 |
+
title: ''
|
5 |
+
labels: enhancement
|
6 |
+
assignees: ''
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
## 🚀 Feature
|
11 |
+
<!-- A clear and concise description of the feature proposal -->
|
12 |
+
|
13 |
+
## Motivation
|
14 |
+
|
15 |
+
<!-- Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too -->
|
16 |
+
|
17 |
+
## Pitch
|
18 |
+
|
19 |
+
<!-- A clear and concise description of what you want to happen. -->
|
20 |
+
|
21 |
+
## Alternatives
|
22 |
+
|
23 |
+
<!-- A clear and concise description of any alternative solutions or features you've considered, if any. -->
|
24 |
+
|
25 |
+
## Additional context
|
26 |
+
|
27 |
+
<!-- Add any other context or screenshots about the feature request here. -->
|
.github/ISSUE_TEMPLATE/question.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "❓Question"
|
3 |
+
about: Ask a general question
|
4 |
+
title: ''
|
5 |
+
labels: question
|
6 |
+
assignees: ''
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
## ❔Question
|
11 |
+
|
12 |
+
|
13 |
+
## Additional context
|
.github/dependabot.yml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 2
|
2 |
+
updates:
|
3 |
+
- package-ecosystem: pip
|
4 |
+
directory: "/"
|
5 |
+
schedule:
|
6 |
+
interval: weekly
|
7 |
+
time: "04:00"
|
8 |
+
open-pull-requests-limit: 10
|
9 |
+
reviewers:
|
10 |
+
- glenn-jocher
|
11 |
+
labels:
|
12 |
+
- dependencies
|
.github/workflows/ci-testing.yml
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: CI CPU testing
|
2 |
+
|
3 |
+
on: # https://help.github.com/en/actions/reference/events-that-trigger-workflows
|
4 |
+
push:
|
5 |
+
branches: [ master ]
|
6 |
+
pull_request:
|
7 |
+
# The branches below must be a subset of the branches above
|
8 |
+
branches: [ master ]
|
9 |
+
schedule:
|
10 |
+
- cron: '0 0 * * *' # Runs at 00:00 UTC every day
|
11 |
+
|
12 |
+
jobs:
|
13 |
+
cpu-tests:
|
14 |
+
|
15 |
+
runs-on: ${{ matrix.os }}
|
16 |
+
strategy:
|
17 |
+
fail-fast: false
|
18 |
+
matrix:
|
19 |
+
os: [ubuntu-latest, macos-latest, windows-latest]
|
20 |
+
python-version: [3.8]
|
21 |
+
model: ['yolov5s'] # models to test
|
22 |
+
|
23 |
+
# Timeout: https://stackoverflow.com/a/59076067/4521646
|
24 |
+
timeout-minutes: 50
|
25 |
+
steps:
|
26 |
+
- uses: actions/checkout@v2
|
27 |
+
- name: Set up Python ${{ matrix.python-version }}
|
28 |
+
uses: actions/setup-python@v2
|
29 |
+
with:
|
30 |
+
python-version: ${{ matrix.python-version }}
|
31 |
+
|
32 |
+
# Note: This uses an internal pip API and may not always work
|
33 |
+
# https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
|
34 |
+
- name: Get pip cache
|
35 |
+
id: pip-cache
|
36 |
+
run: |
|
37 |
+
python -c "from pip._internal.locations import USER_CACHE_DIR; print('::set-output name=dir::' + USER_CACHE_DIR)"
|
38 |
+
|
39 |
+
- name: Cache pip
|
40 |
+
uses: actions/cache@v1
|
41 |
+
with:
|
42 |
+
path: ${{ steps.pip-cache.outputs.dir }}
|
43 |
+
key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }}
|
44 |
+
restore-keys: |
|
45 |
+
${{ runner.os }}-${{ matrix.python-version }}-pip-
|
46 |
+
|
47 |
+
- name: Install dependencies
|
48 |
+
run: |
|
49 |
+
python -m pip install --upgrade pip
|
50 |
+
pip install -qr requirements.txt -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
51 |
+
pip install -q onnx
|
52 |
+
python --version
|
53 |
+
pip --version
|
54 |
+
pip list
|
55 |
+
shell: bash
|
56 |
+
|
57 |
+
- name: Download data
|
58 |
+
run: |
|
59 |
+
# curl -L -o tmp.zip https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
|
60 |
+
# unzip -q tmp.zip -d ../
|
61 |
+
# rm tmp.zip
|
62 |
+
|
63 |
+
- name: Tests workflow
|
64 |
+
run: |
|
65 |
+
# export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories
|
66 |
+
di=cpu # inference devices # define device
|
67 |
+
|
68 |
+
# train
|
69 |
+
python train.py --img 128 --batch 16 --weights weights/${{ matrix.model }}.pt --cfg models/${{ matrix.model }}.yaml --epochs 1 --device $di
|
70 |
+
# detect
|
71 |
+
python detect.py --weights weights/${{ matrix.model }}.pt --device $di
|
72 |
+
python detect.py --weights runs/train/exp/weights/last.pt --device $di
|
73 |
+
# test
|
74 |
+
python test.py --img 128 --batch 16 --weights weights/${{ matrix.model }}.pt --device $di
|
75 |
+
python test.py --img 128 --batch 16 --weights runs/train/exp/weights/last.pt --device $di
|
76 |
+
|
77 |
+
python hubconf.py # hub
|
78 |
+
python models/yolo.py --cfg models/${{ matrix.model }}.yaml # inspect
|
79 |
+
python models/export.py --img 128 --batch 1 --weights weights/${{ matrix.model }}.pt # export
|
80 |
+
shell: bash
|
.github/workflows/codeql-analysis.yml
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This action runs GitHub's industry-leading static analysis engine, CodeQL, against a repository's source code to find security vulnerabilities.
|
2 |
+
# https://github.com/github/codeql-action
|
3 |
+
|
4 |
+
name: "CodeQL"
|
5 |
+
|
6 |
+
on:
|
7 |
+
schedule:
|
8 |
+
- cron: '0 0 1 * *' # Runs at 00:00 UTC on the 1st of every month
|
9 |
+
|
10 |
+
jobs:
|
11 |
+
analyze:
|
12 |
+
name: Analyze
|
13 |
+
runs-on: ubuntu-latest
|
14 |
+
|
15 |
+
strategy:
|
16 |
+
fail-fast: false
|
17 |
+
matrix:
|
18 |
+
language: [ 'python' ]
|
19 |
+
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
|
20 |
+
# Learn more:
|
21 |
+
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
|
22 |
+
|
23 |
+
steps:
|
24 |
+
- name: Checkout repository
|
25 |
+
uses: actions/checkout@v2
|
26 |
+
|
27 |
+
# Initializes the CodeQL tools for scanning.
|
28 |
+
- name: Initialize CodeQL
|
29 |
+
uses: github/codeql-action/init@v1
|
30 |
+
with:
|
31 |
+
languages: ${{ matrix.language }}
|
32 |
+
# If you wish to specify custom queries, you can do so here or in a config file.
|
33 |
+
# By default, queries listed here will override any specified in a config file.
|
34 |
+
# Prefix the list here with "+" to use these queries and those in the config file.
|
35 |
+
# queries: ./path/to/local/query, your-org/your-repo/queries@main
|
36 |
+
|
37 |
+
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
|
38 |
+
# If this step fails, then you should remove it and run the build manually (see below)
|
39 |
+
- name: Autobuild
|
40 |
+
uses: github/codeql-action/autobuild@v1
|
41 |
+
|
42 |
+
# ℹ️ Command-line programs to run using the OS shell.
|
43 |
+
# 📚 https://git.io/JvXDl
|
44 |
+
|
45 |
+
# ✏️ If the Autobuild fails above, remove it and uncomment the following three lines
|
46 |
+
# and modify them (or add more) to build your code if your project
|
47 |
+
# uses a compiled language
|
48 |
+
|
49 |
+
#- run: |
|
50 |
+
# make bootstrap
|
51 |
+
# make release
|
52 |
+
|
53 |
+
- name: Perform CodeQL Analysis
|
54 |
+
uses: github/codeql-action/analyze@v1
|
.github/workflows/greetings.yml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Greetings
|
2 |
+
|
3 |
+
on: [pull_request_target, issues]
|
4 |
+
|
5 |
+
jobs:
|
6 |
+
greeting:
|
7 |
+
runs-on: ubuntu-latest
|
8 |
+
steps:
|
9 |
+
- uses: actions/first-interaction@v1
|
10 |
+
with:
|
11 |
+
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
12 |
+
pr-message: |
|
13 |
+
👋 Hello @${{ github.actor }}, thank you for submitting a 🚀 PR! To allow your work to be integrated as seamlessly as possible, we advise you to:
|
14 |
+
- ✅ Verify your PR is **up-to-date with origin/master.** If your PR is behind origin/master an automatic [GitHub actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) rebase may be attempted by including the /rebase command in a comment body, or by running the following code, replacing 'feature' with the name of your local branch:
|
15 |
+
```bash
|
16 |
+
git remote add upstream https://github.com/ultralytics/yolov5.git
|
17 |
+
git fetch upstream
|
18 |
+
git checkout feature # <----- replace 'feature' with local branch name
|
19 |
+
git rebase upstream/master
|
20 |
+
git push -u origin -f
|
21 |
+
```
|
22 |
+
- ✅ Verify all Continuous Integration (CI) **checks are passing**.
|
23 |
+
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ -Bruce Lee
|
24 |
+
|
25 |
+
issue-message: |
|
26 |
+
👋 Hello @${{ github.actor }}, thank you for your interest in 🚀 YOLOv5! Please visit our ⭐️ [Tutorials](https://github.com/ultralytics/yolov5/wiki#tutorials) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) all the way to advanced concepts like [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607).
|
27 |
+
|
28 |
+
If this is a 🐛 Bug Report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you.
|
29 |
+
|
30 |
+
If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online [W&B logging](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data#visualize) if available.
|
31 |
+
|
32 |
+
For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at [email protected].
|
33 |
+
|
34 |
+
## Requirements
|
35 |
+
|
36 |
+
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
|
37 |
+
```bash
|
38 |
+
$ pip install -r requirements.txt
|
39 |
+
```
|
40 |
+
|
41 |
+
## Environments
|
42 |
+
|
43 |
+
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
44 |
+
|
45 |
+
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
46 |
+
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
|
47 |
+
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
|
48 |
+
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
49 |
+
|
50 |
+
|
51 |
+
## Status
|
52 |
+
|
53 |
+

|
54 |
+
|
55 |
+
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/models/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
|
56 |
+
|
.github/workflows/rebase.yml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Automatic Rebase
|
2 |
+
# https://github.com/marketplace/actions/automatic-rebase
|
3 |
+
|
4 |
+
on:
|
5 |
+
issue_comment:
|
6 |
+
types: [created]
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
rebase:
|
10 |
+
name: Rebase
|
11 |
+
if: github.event.issue.pull_request != '' && contains(github.event.comment.body, '/rebase')
|
12 |
+
runs-on: ubuntu-latest
|
13 |
+
steps:
|
14 |
+
- name: Checkout the latest code
|
15 |
+
uses: actions/checkout@v2
|
16 |
+
with:
|
17 |
+
fetch-depth: 0
|
18 |
+
- name: Automatic Rebase
|
19 |
+
uses: cirrus-actions/[email protected]
|
20 |
+
env:
|
21 |
+
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
.github/workflows/stale.yml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Close stale issues
|
2 |
+
on:
|
3 |
+
schedule:
|
4 |
+
- cron: "0 0 * * *"
|
5 |
+
|
6 |
+
jobs:
|
7 |
+
stale:
|
8 |
+
runs-on: ubuntu-latest
|
9 |
+
steps:
|
10 |
+
- uses: actions/stale@v3
|
11 |
+
with:
|
12 |
+
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
13 |
+
stale-issue-message: 'This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.'
|
14 |
+
stale-pr-message: 'This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.'
|
15 |
+
days-before-stale: 30
|
16 |
+
days-before-close: 5
|
17 |
+
exempt-issue-labels: 'documentation,tutorial'
|
18 |
+
operations-per-run: 100 # The maximum number of operations per run, used to control rate limiting.
|
.gitignore
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
|
2 |
+
*.jpg
|
3 |
+
*.jpeg
|
4 |
+
*.png
|
5 |
+
*.bmp
|
6 |
+
*.tif
|
7 |
+
*.tiff
|
8 |
+
*.heic
|
9 |
+
*.JPG
|
10 |
+
*.JPEG
|
11 |
+
*.PNG
|
12 |
+
*.BMP
|
13 |
+
*.TIF
|
14 |
+
*.TIFF
|
15 |
+
*.HEIC
|
16 |
+
*.mp4
|
17 |
+
*.mov
|
18 |
+
*.MOV
|
19 |
+
*.avi
|
20 |
+
*.data
|
21 |
+
*.json
|
22 |
+
|
23 |
+
*.cfg
|
24 |
+
!cfg/yolov3*.cfg
|
25 |
+
|
26 |
+
storage.googleapis.com
|
27 |
+
data/*
|
28 |
+
!data/images/zidane.jpg
|
29 |
+
!data/images/bus.jpg
|
30 |
+
!data/coco.names
|
31 |
+
!data/coco_paper.names
|
32 |
+
!data/coco.data
|
33 |
+
!data/coco_*.data
|
34 |
+
!data/coco_*.txt
|
35 |
+
!data/trainvalno5k.shapes
|
36 |
+
!data/*.sh
|
37 |
+
|
38 |
+
pycocotools/*
|
39 |
+
results*.txt
|
40 |
+
gcp_test*.sh
|
41 |
+
|
42 |
+
# Datasets -------------------------------------------------------------------------------------------------------------
|
43 |
+
coco/
|
44 |
+
coco128/
|
45 |
+
VOC/
|
46 |
+
|
47 |
+
# MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
|
48 |
+
*.m~
|
49 |
+
*.mat
|
50 |
+
!targets*.mat
|
51 |
+
|
52 |
+
# Neural Network weights -----------------------------------------------------------------------------------------------
|
53 |
+
*.onnx
|
54 |
+
*.mlmodel
|
55 |
+
*.torchscript
|
56 |
+
darknet53.conv.74
|
57 |
+
yolov3-tiny.conv.15
|
58 |
+
|
59 |
+
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
|
60 |
+
# Byte-compiled / optimized / DLL files
|
61 |
+
__pycache__/
|
62 |
+
*.py[cod]
|
63 |
+
*$py.class
|
64 |
+
|
65 |
+
# C extensions
|
66 |
+
*.so
|
67 |
+
|
68 |
+
# Distribution / packaging
|
69 |
+
.Python
|
70 |
+
env/
|
71 |
+
build/
|
72 |
+
develop-eggs/
|
73 |
+
dist/
|
74 |
+
downloads/
|
75 |
+
eggs/
|
76 |
+
.eggs/
|
77 |
+
lib/
|
78 |
+
lib64/
|
79 |
+
parts/
|
80 |
+
sdist/
|
81 |
+
var/
|
82 |
+
wheels/
|
83 |
+
*.egg-info/
|
84 |
+
wandb/
|
85 |
+
.installed.cfg
|
86 |
+
*.egg
|
87 |
+
|
88 |
+
|
89 |
+
# PyInstaller
|
90 |
+
# Usually these files are written by a python script from a template
|
91 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
92 |
+
*.manifest
|
93 |
+
*.spec
|
94 |
+
|
95 |
+
# Installer logs
|
96 |
+
pip-log.txt
|
97 |
+
pip-delete-this-directory.txt
|
98 |
+
|
99 |
+
# Unit test / coverage reports
|
100 |
+
htmlcov/
|
101 |
+
.tox/
|
102 |
+
.coverage
|
103 |
+
.coverage.*
|
104 |
+
.cache
|
105 |
+
nosetests.xml
|
106 |
+
coverage.xml
|
107 |
+
*.cover
|
108 |
+
.hypothesis/
|
109 |
+
|
110 |
+
# Translations
|
111 |
+
*.mo
|
112 |
+
*.pot
|
113 |
+
|
114 |
+
# Django stuff:
|
115 |
+
*.log
|
116 |
+
local_settings.py
|
117 |
+
|
118 |
+
# Flask stuff:
|
119 |
+
instance/
|
120 |
+
.webassets-cache
|
121 |
+
|
122 |
+
# Scrapy stuff:
|
123 |
+
.scrapy
|
124 |
+
|
125 |
+
# Sphinx documentation
|
126 |
+
docs/_build/
|
127 |
+
|
128 |
+
# PyBuilder
|
129 |
+
target/
|
130 |
+
|
131 |
+
# Jupyter Notebook
|
132 |
+
.ipynb_checkpoints
|
133 |
+
|
134 |
+
# pyenv
|
135 |
+
.python-version
|
136 |
+
|
137 |
+
# celery beat schedule file
|
138 |
+
celerybeat-schedule
|
139 |
+
|
140 |
+
# SageMath parsed files
|
141 |
+
*.sage.py
|
142 |
+
|
143 |
+
# dotenv
|
144 |
+
.env
|
145 |
+
|
146 |
+
# virtualenv
|
147 |
+
.venv*
|
148 |
+
venv*/
|
149 |
+
ENV*/
|
150 |
+
|
151 |
+
# Spyder project settings
|
152 |
+
.spyderproject
|
153 |
+
.spyproject
|
154 |
+
|
155 |
+
# Rope project settings
|
156 |
+
.ropeproject
|
157 |
+
|
158 |
+
# mkdocs documentation
|
159 |
+
/site
|
160 |
+
|
161 |
+
# mypy
|
162 |
+
.mypy_cache/
|
163 |
+
|
164 |
+
|
165 |
+
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
|
166 |
+
|
167 |
+
# General
|
168 |
+
.DS_Store
|
169 |
+
.AppleDouble
|
170 |
+
.LSOverride
|
171 |
+
|
172 |
+
# Icon must end with two \r
|
173 |
+
Icon
|
174 |
+
Icon?
|
175 |
+
|
176 |
+
# Thumbnails
|
177 |
+
._*
|
178 |
+
|
179 |
+
# Files that might appear in the root of a volume
|
180 |
+
.DocumentRevisions-V100
|
181 |
+
.fseventsd
|
182 |
+
.Spotlight-V100
|
183 |
+
.TemporaryItems
|
184 |
+
.Trashes
|
185 |
+
.VolumeIcon.icns
|
186 |
+
.com.apple.timemachine.donotpresent
|
187 |
+
|
188 |
+
# Directories potentially created on remote AFP share
|
189 |
+
.AppleDB
|
190 |
+
.AppleDesktop
|
191 |
+
Network Trash Folder
|
192 |
+
Temporary Items
|
193 |
+
.apdisk
|
194 |
+
|
195 |
+
|
196 |
+
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
|
197 |
+
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
|
198 |
+
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
199 |
+
|
200 |
+
# User-specific stuff:
|
201 |
+
.idea/*
|
202 |
+
.idea/**/workspace.xml
|
203 |
+
.idea/**/tasks.xml
|
204 |
+
.idea/dictionaries
|
205 |
+
.html # Bokeh Plots
|
206 |
+
.pg # TensorFlow Frozen Graphs
|
207 |
+
.avi # videos
|
208 |
+
|
209 |
+
# Sensitive or high-churn files:
|
210 |
+
.idea/**/dataSources/
|
211 |
+
.idea/**/dataSources.ids
|
212 |
+
.idea/**/dataSources.local.xml
|
213 |
+
.idea/**/sqlDataSources.xml
|
214 |
+
.idea/**/dynamic.xml
|
215 |
+
.idea/**/uiDesigner.xml
|
216 |
+
|
217 |
+
# Gradle:
|
218 |
+
.idea/**/gradle.xml
|
219 |
+
.idea/**/libraries
|
220 |
+
|
221 |
+
# CMake
|
222 |
+
cmake-build-debug/
|
223 |
+
cmake-build-release/
|
224 |
+
|
225 |
+
# Mongo Explorer plugin:
|
226 |
+
.idea/**/mongoSettings.xml
|
227 |
+
|
228 |
+
## File-based project format:
|
229 |
+
*.iws
|
230 |
+
|
231 |
+
## Plugin-specific files:
|
232 |
+
|
233 |
+
# IntelliJ
|
234 |
+
out/
|
235 |
+
|
236 |
+
# mpeltonen/sbt-idea plugin
|
237 |
+
.idea_modules/
|
238 |
+
|
239 |
+
# JIRA plugin
|
240 |
+
atlassian-ide-plugin.xml
|
241 |
+
|
242 |
+
# Cursive Clojure plugin
|
243 |
+
.idea/replstate.xml
|
244 |
+
|
245 |
+
# Crashlytics plugin (for Android Studio and IntelliJ)
|
246 |
+
com_crashlytics_export_strings.xml
|
247 |
+
crashlytics.properties
|
248 |
+
crashlytics-build.properties
|
249 |
+
fabric.properties
|
Dockerfile
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
|
2 |
+
FROM nvcr.io/nvidia/pytorch:20.12-py3
|
3 |
+
|
4 |
+
# Install linux packages
|
5 |
+
RUN apt update && apt install -y zip screen libgl1-mesa-glx
|
6 |
+
|
7 |
+
# RUN apt-get install vim
|
8 |
+
|
9 |
+
# Install python dependencies
|
10 |
+
RUN python -m pip install --upgrade pip
|
11 |
+
COPY requirements.txt .
|
12 |
+
RUN pip install -r requirements.txt gsutil
|
13 |
+
|
14 |
+
# Create working directory
|
15 |
+
RUN mkdir -p /usr/src/app
|
16 |
+
WORKDIR /usr/src/app
|
17 |
+
|
18 |
+
# Copy contents
|
19 |
+
COPY . /usr/src/app
|
20 |
+
|
21 |
+
RUN git config --global --add safe.directory /usr/src/app
|
22 |
+
|
23 |
+
RUN git config --global credential.helper stores
|
24 |
+
|
25 |
+
# Copy weights
|
26 |
+
#RUN python3 -c "from models import *; \
|
27 |
+
#attempt_download('weights/yolov5s.pt'); \
|
28 |
+
#attempt_download('weights/yolov5m.pt'); \
|
29 |
+
#attempt_download('weights/yolov5l.pt')"
|
30 |
+
|
31 |
+
|
32 |
+
# --------------------------------------------------- Extras Below ---------------------------------------------------
|
33 |
+
|
34 |
+
# Build and Push
|
35 |
+
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
|
36 |
+
# for v in {300..303}; do t=ultralytics/coco:v$v && sudo docker build -t $t . && sudo docker push $t; done
|
37 |
+
|
38 |
+
# Pull and Run
|
39 |
+
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
|
40 |
+
|
41 |
+
# Pull and Run with local directory access
|
42 |
+
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t
|
43 |
+
|
44 |
+
# Kill all
|
45 |
+
# sudo docker kill $(sudo docker ps -q)
|
46 |
+
|
47 |
+
# Kill all image-based
|
48 |
+
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
|
49 |
+
|
50 |
+
# Bash into running container
|
51 |
+
# sudo docker exec -it 5a9b5863d93d bash
|
52 |
+
|
53 |
+
# Bash into stopped container
|
54 |
+
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
|
55 |
+
|
56 |
+
# Send weights to GCP
|
57 |
+
# python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt
|
58 |
+
|
59 |
+
# Clean up
|
60 |
+
# docker system prune -a --volumes
|
LICENSE
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 29 June 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works.
|
12 |
+
|
13 |
+
The licenses for most software and other practical works are designed
|
14 |
+
to take away your freedom to share and change the works. By contrast,
|
15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
16 |
+
share and change all versions of a program--to make sure it remains free
|
17 |
+
software for all its users. We, the Free Software Foundation, use the
|
18 |
+
GNU General Public License for most of our software; it applies also to
|
19 |
+
any other work released this way by its authors. You can apply it to
|
20 |
+
your programs, too.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
To protect your rights, we need to prevent others from denying you
|
30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
+
certain responsibilities if you distribute copies of the software, or if
|
32 |
+
you modify it: responsibilities to respect the freedom of others.
|
33 |
+
|
34 |
+
For example, if you distribute copies of such a program, whether
|
35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
36 |
+
freedoms that you received. You must make sure that they, too, receive
|
37 |
+
or can get the source code. And you must show them these terms so they
|
38 |
+
know their rights.
|
39 |
+
|
40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
43 |
+
|
44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
45 |
+
that there is no warranty for this free software. For both users' and
|
46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
47 |
+
changed, so that their problems will not be attributed erroneously to
|
48 |
+
authors of previous versions.
|
49 |
+
|
50 |
+
Some devices are designed to deny users access to install or run
|
51 |
+
modified versions of the software inside them, although the manufacturer
|
52 |
+
can do so. This is fundamentally incompatible with the aim of
|
53 |
+
protecting users' freedom to change the software. The systematic
|
54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
+
have designed this version of the GPL to prohibit the practice for those
|
57 |
+
products. If such problems arise substantially in other domains, we
|
58 |
+
stand ready to extend this provision to those domains in future versions
|
59 |
+
of the GPL, as needed to protect the freedom of users.
|
60 |
+
|
61 |
+
Finally, every program is threatened constantly by software patents.
|
62 |
+
States should not allow patents to restrict development and use of
|
63 |
+
software on general-purpose computers, but in those that do, we wish to
|
64 |
+
avoid the special danger that patents applied to a free program could
|
65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
+
patents cannot be used to render the program non-free.
|
67 |
+
|
68 |
+
The precise terms and conditions for copying, distribution and
|
69 |
+
modification follow.
|
70 |
+
|
71 |
+
TERMS AND CONDITIONS
|
72 |
+
|
73 |
+
0. Definitions.
|
74 |
+
|
75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
76 |
+
|
77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
+
works, such as semiconductor masks.
|
79 |
+
|
80 |
+
"The Program" refers to any copyrightable work licensed under this
|
81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
+
"recipients" may be individuals or organizations.
|
83 |
+
|
84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
+
in a fashion requiring copyright permission, other than the making of an
|
86 |
+
exact copy. The resulting work is called a "modified version" of the
|
87 |
+
earlier work or a work "based on" the earlier work.
|
88 |
+
|
89 |
+
A "covered work" means either the unmodified Program or a work based
|
90 |
+
on the Program.
|
91 |
+
|
92 |
+
To "propagate" a work means to do anything with it that, without
|
93 |
+
permission, would make you directly or secondarily liable for
|
94 |
+
infringement under applicable copyright law, except executing it on a
|
95 |
+
computer or modifying a private copy. Propagation includes copying,
|
96 |
+
distribution (with or without modification), making available to the
|
97 |
+
public, and in some countries other activities as well.
|
98 |
+
|
99 |
+
To "convey" a work means any kind of propagation that enables other
|
100 |
+
parties to make or receive copies. Mere interaction with a user through
|
101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
102 |
+
|
103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
+
to the extent that it includes a convenient and prominently visible
|
105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
+
tells the user that there is no warranty for the work (except to the
|
107 |
+
extent that warranties are provided), that licensees may convey the
|
108 |
+
work under this License, and how to view a copy of this License. If
|
109 |
+
the interface presents a list of user commands or options, such as a
|
110 |
+
menu, a prominent item in the list meets this criterion.
|
111 |
+
|
112 |
+
1. Source Code.
|
113 |
+
|
114 |
+
The "source code" for a work means the preferred form of the work
|
115 |
+
for making modifications to it. "Object code" means any non-source
|
116 |
+
form of a work.
|
117 |
+
|
118 |
+
A "Standard Interface" means an interface that either is an official
|
119 |
+
standard defined by a recognized standards body, or, in the case of
|
120 |
+
interfaces specified for a particular programming language, one that
|
121 |
+
is widely used among developers working in that language.
|
122 |
+
|
123 |
+
The "System Libraries" of an executable work include anything, other
|
124 |
+
than the work as a whole, that (a) is included in the normal form of
|
125 |
+
packaging a Major Component, but which is not part of that Major
|
126 |
+
Component, and (b) serves only to enable use of the work with that
|
127 |
+
Major Component, or to implement a Standard Interface for which an
|
128 |
+
implementation is available to the public in source code form. A
|
129 |
+
"Major Component", in this context, means a major essential component
|
130 |
+
(kernel, window system, and so on) of the specific operating system
|
131 |
+
(if any) on which the executable work runs, or a compiler used to
|
132 |
+
produce the work, or an object code interpreter used to run it.
|
133 |
+
|
134 |
+
The "Corresponding Source" for a work in object code form means all
|
135 |
+
the source code needed to generate, install, and (for an executable
|
136 |
+
work) run the object code and to modify the work, including scripts to
|
137 |
+
control those activities. However, it does not include the work's
|
138 |
+
System Libraries, or general-purpose tools or generally available free
|
139 |
+
programs which are used unmodified in performing those activities but
|
140 |
+
which are not part of the work. For example, Corresponding Source
|
141 |
+
includes interface definition files associated with source files for
|
142 |
+
the work, and the source code for shared libraries and dynamically
|
143 |
+
linked subprograms that the work is specifically designed to require,
|
144 |
+
such as by intimate data communication or control flow between those
|
145 |
+
subprograms and other parts of the work.
|
146 |
+
|
147 |
+
The Corresponding Source need not include anything that users
|
148 |
+
can regenerate automatically from other parts of the Corresponding
|
149 |
+
Source.
|
150 |
+
|
151 |
+
The Corresponding Source for a work in source code form is that
|
152 |
+
same work.
|
153 |
+
|
154 |
+
2. Basic Permissions.
|
155 |
+
|
156 |
+
All rights granted under this License are granted for the term of
|
157 |
+
copyright on the Program, and are irrevocable provided the stated
|
158 |
+
conditions are met. This License explicitly affirms your unlimited
|
159 |
+
permission to run the unmodified Program. The output from running a
|
160 |
+
covered work is covered by this License only if the output, given its
|
161 |
+
content, constitutes a covered work. This License acknowledges your
|
162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
+
|
164 |
+
You may make, run and propagate covered works that you do not
|
165 |
+
convey, without conditions so long as your license otherwise remains
|
166 |
+
in force. You may convey covered works to others for the sole purpose
|
167 |
+
of having them make modifications exclusively for you, or provide you
|
168 |
+
with facilities for running those works, provided that you comply with
|
169 |
+
the terms of this License in conveying all material for which you do
|
170 |
+
not control copyright. Those thus making or running the covered works
|
171 |
+
for you must do so exclusively on your behalf, under your direction
|
172 |
+
and control, on terms that prohibit them from making any copies of
|
173 |
+
your copyrighted material outside their relationship with you.
|
174 |
+
|
175 |
+
Conveying under any other circumstances is permitted solely under
|
176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
+
makes it unnecessary.
|
178 |
+
|
179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
+
|
181 |
+
No covered work shall be deemed part of an effective technological
|
182 |
+
measure under any applicable law fulfilling obligations under article
|
183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
+
similar laws prohibiting or restricting circumvention of such
|
185 |
+
measures.
|
186 |
+
|
187 |
+
When you convey a covered work, you waive any legal power to forbid
|
188 |
+
circumvention of technological measures to the extent such circumvention
|
189 |
+
is effected by exercising rights under this License with respect to
|
190 |
+
the covered work, and you disclaim any intention to limit operation or
|
191 |
+
modification of the work as a means of enforcing, against the work's
|
192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
193 |
+
technological measures.
|
194 |
+
|
195 |
+
4. Conveying Verbatim Copies.
|
196 |
+
|
197 |
+
You may convey verbatim copies of the Program's source code as you
|
198 |
+
receive it, in any medium, provided that you conspicuously and
|
199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
200 |
+
keep intact all notices stating that this License and any
|
201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
+
keep intact all notices of the absence of any warranty; and give all
|
203 |
+
recipients a copy of this License along with the Program.
|
204 |
+
|
205 |
+
You may charge any price or no price for each copy that you convey,
|
206 |
+
and you may offer support or warranty protection for a fee.
|
207 |
+
|
208 |
+
5. Conveying Modified Source Versions.
|
209 |
+
|
210 |
+
You may convey a work based on the Program, or the modifications to
|
211 |
+
produce it from the Program, in the form of source code under the
|
212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
213 |
+
|
214 |
+
a) The work must carry prominent notices stating that you modified
|
215 |
+
it, and giving a relevant date.
|
216 |
+
|
217 |
+
b) The work must carry prominent notices stating that it is
|
218 |
+
released under this License and any conditions added under section
|
219 |
+
7. This requirement modifies the requirement in section 4 to
|
220 |
+
"keep intact all notices".
|
221 |
+
|
222 |
+
c) You must license the entire work, as a whole, under this
|
223 |
+
License to anyone who comes into possession of a copy. This
|
224 |
+
License will therefore apply, along with any applicable section 7
|
225 |
+
additional terms, to the whole of the work, and all its parts,
|
226 |
+
regardless of how they are packaged. This License gives no
|
227 |
+
permission to license the work in any other way, but it does not
|
228 |
+
invalidate such permission if you have separately received it.
|
229 |
+
|
230 |
+
d) If the work has interactive user interfaces, each must display
|
231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
233 |
+
work need not make them do so.
|
234 |
+
|
235 |
+
A compilation of a covered work with other separate and independent
|
236 |
+
works, which are not by their nature extensions of the covered work,
|
237 |
+
and which are not combined with it such as to form a larger program,
|
238 |
+
in or on a volume of a storage or distribution medium, is called an
|
239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
240 |
+
used to limit the access or legal rights of the compilation's users
|
241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
242 |
+
in an aggregate does not cause this License to apply to the other
|
243 |
+
parts of the aggregate.
|
244 |
+
|
245 |
+
6. Conveying Non-Source Forms.
|
246 |
+
|
247 |
+
You may convey a covered work in object code form under the terms
|
248 |
+
of sections 4 and 5, provided that you also convey the
|
249 |
+
machine-readable Corresponding Source under the terms of this License,
|
250 |
+
in one of these ways:
|
251 |
+
|
252 |
+
a) Convey the object code in, or embodied in, a physical product
|
253 |
+
(including a physical distribution medium), accompanied by the
|
254 |
+
Corresponding Source fixed on a durable physical medium
|
255 |
+
customarily used for software interchange.
|
256 |
+
|
257 |
+
b) Convey the object code in, or embodied in, a physical product
|
258 |
+
(including a physical distribution medium), accompanied by a
|
259 |
+
written offer, valid for at least three years and valid for as
|
260 |
+
long as you offer spare parts or customer support for that product
|
261 |
+
model, to give anyone who possesses the object code either (1) a
|
262 |
+
copy of the Corresponding Source for all the software in the
|
263 |
+
product that is covered by this License, on a durable physical
|
264 |
+
medium customarily used for software interchange, for a price no
|
265 |
+
more than your reasonable cost of physically performing this
|
266 |
+
conveying of source, or (2) access to copy the
|
267 |
+
Corresponding Source from a network server at no charge.
|
268 |
+
|
269 |
+
c) Convey individual copies of the object code with a copy of the
|
270 |
+
written offer to provide the Corresponding Source. This
|
271 |
+
alternative is allowed only occasionally and noncommercially, and
|
272 |
+
only if you received the object code with such an offer, in accord
|
273 |
+
with subsection 6b.
|
274 |
+
|
275 |
+
d) Convey the object code by offering access from a designated
|
276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
277 |
+
Corresponding Source in the same way through the same place at no
|
278 |
+
further charge. You need not require recipients to copy the
|
279 |
+
Corresponding Source along with the object code. If the place to
|
280 |
+
copy the object code is a network server, the Corresponding Source
|
281 |
+
may be on a different server (operated by you or a third party)
|
282 |
+
that supports equivalent copying facilities, provided you maintain
|
283 |
+
clear directions next to the object code saying where to find the
|
284 |
+
Corresponding Source. Regardless of what server hosts the
|
285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
286 |
+
available for as long as needed to satisfy these requirements.
|
287 |
+
|
288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
+
you inform other peers where the object code and Corresponding
|
290 |
+
Source of the work are being offered to the general public at no
|
291 |
+
charge under subsection 6d.
|
292 |
+
|
293 |
+
A separable portion of the object code, whose source code is excluded
|
294 |
+
from the Corresponding Source as a System Library, need not be
|
295 |
+
included in conveying the object code work.
|
296 |
+
|
297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
298 |
+
tangible personal property which is normally used for personal, family,
|
299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
+
product received by a particular user, "normally used" refers to a
|
303 |
+
typical or common use of that class of product, regardless of the status
|
304 |
+
of the particular user or of the way in which the particular user
|
305 |
+
actually uses, or expects or is expected to use, the product. A product
|
306 |
+
is a consumer product regardless of whether the product has substantial
|
307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
+
the only significant mode of use of the product.
|
309 |
+
|
310 |
+
"Installation Information" for a User Product means any methods,
|
311 |
+
procedures, authorization keys, or other information required to install
|
312 |
+
and execute modified versions of a covered work in that User Product from
|
313 |
+
a modified version of its Corresponding Source. The information must
|
314 |
+
suffice to ensure that the continued functioning of the modified object
|
315 |
+
code is in no case prevented or interfered with solely because
|
316 |
+
modification has been made.
|
317 |
+
|
318 |
+
If you convey an object code work under this section in, or with, or
|
319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
320 |
+
part of a transaction in which the right of possession and use of the
|
321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
322 |
+
fixed term (regardless of how the transaction is characterized), the
|
323 |
+
Corresponding Source conveyed under this section must be accompanied
|
324 |
+
by the Installation Information. But this requirement does not apply
|
325 |
+
if neither you nor any third party retains the ability to install
|
326 |
+
modified object code on the User Product (for example, the work has
|
327 |
+
been installed in ROM).
|
328 |
+
|
329 |
+
The requirement to provide Installation Information does not include a
|
330 |
+
requirement to continue to provide support service, warranty, or updates
|
331 |
+
for a work that has been modified or installed by the recipient, or for
|
332 |
+
the User Product in which it has been modified or installed. Access to a
|
333 |
+
network may be denied when the modification itself materially and
|
334 |
+
adversely affects the operation of the network or violates the rules and
|
335 |
+
protocols for communication across the network.
|
336 |
+
|
337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
338 |
+
in accord with this section must be in a format that is publicly
|
339 |
+
documented (and with an implementation available to the public in
|
340 |
+
source code form), and must require no special password or key for
|
341 |
+
unpacking, reading or copying.
|
342 |
+
|
343 |
+
7. Additional Terms.
|
344 |
+
|
345 |
+
"Additional permissions" are terms that supplement the terms of this
|
346 |
+
License by making exceptions from one or more of its conditions.
|
347 |
+
Additional permissions that are applicable to the entire Program shall
|
348 |
+
be treated as though they were included in this License, to the extent
|
349 |
+
that they are valid under applicable law. If additional permissions
|
350 |
+
apply only to part of the Program, that part may be used separately
|
351 |
+
under those permissions, but the entire Program remains governed by
|
352 |
+
this License without regard to the additional permissions.
|
353 |
+
|
354 |
+
When you convey a copy of a covered work, you may at your option
|
355 |
+
remove any additional permissions from that copy, or from any part of
|
356 |
+
it. (Additional permissions may be written to require their own
|
357 |
+
removal in certain cases when you modify the work.) You may place
|
358 |
+
additional permissions on material, added by you to a covered work,
|
359 |
+
for which you have or can give appropriate copyright permission.
|
360 |
+
|
361 |
+
Notwithstanding any other provision of this License, for material you
|
362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
+
that material) supplement the terms of this License with terms:
|
364 |
+
|
365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
366 |
+
terms of sections 15 and 16 of this License; or
|
367 |
+
|
368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
369 |
+
author attributions in that material or in the Appropriate Legal
|
370 |
+
Notices displayed by works containing it; or
|
371 |
+
|
372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
+
requiring that modified versions of such material be marked in
|
374 |
+
reasonable ways as different from the original version; or
|
375 |
+
|
376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
+
authors of the material; or
|
378 |
+
|
379 |
+
e) Declining to grant rights under trademark law for use of some
|
380 |
+
trade names, trademarks, or service marks; or
|
381 |
+
|
382 |
+
f) Requiring indemnification of licensors and authors of that
|
383 |
+
material by anyone who conveys the material (or modified versions of
|
384 |
+
it) with contractual assumptions of liability to the recipient, for
|
385 |
+
any liability that these contractual assumptions directly impose on
|
386 |
+
those licensors and authors.
|
387 |
+
|
388 |
+
All other non-permissive additional terms are considered "further
|
389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
390 |
+
received it, or any part of it, contains a notice stating that it is
|
391 |
+
governed by this License along with a term that is a further
|
392 |
+
restriction, you may remove that term. If a license document contains
|
393 |
+
a further restriction but permits relicensing or conveying under this
|
394 |
+
License, you may add to a covered work material governed by the terms
|
395 |
+
of that license document, provided that the further restriction does
|
396 |
+
not survive such relicensing or conveying.
|
397 |
+
|
398 |
+
If you add terms to a covered work in accord with this section, you
|
399 |
+
must place, in the relevant source files, a statement of the
|
400 |
+
additional terms that apply to those files, or a notice indicating
|
401 |
+
where to find the applicable terms.
|
402 |
+
|
403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
+
form of a separately written license, or stated as exceptions;
|
405 |
+
the above requirements apply either way.
|
406 |
+
|
407 |
+
8. Termination.
|
408 |
+
|
409 |
+
You may not propagate or modify a covered work except as expressly
|
410 |
+
provided under this License. Any attempt otherwise to propagate or
|
411 |
+
modify it is void, and will automatically terminate your rights under
|
412 |
+
this License (including any patent licenses granted under the third
|
413 |
+
paragraph of section 11).
|
414 |
+
|
415 |
+
However, if you cease all violation of this License, then your
|
416 |
+
license from a particular copyright holder is reinstated (a)
|
417 |
+
provisionally, unless and until the copyright holder explicitly and
|
418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
419 |
+
holder fails to notify you of the violation by some reasonable means
|
420 |
+
prior to 60 days after the cessation.
|
421 |
+
|
422 |
+
Moreover, your license from a particular copyright holder is
|
423 |
+
reinstated permanently if the copyright holder notifies you of the
|
424 |
+
violation by some reasonable means, this is the first time you have
|
425 |
+
received notice of violation of this License (for any work) from that
|
426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
427 |
+
your receipt of the notice.
|
428 |
+
|
429 |
+
Termination of your rights under this section does not terminate the
|
430 |
+
licenses of parties who have received copies or rights from you under
|
431 |
+
this License. If your rights have been terminated and not permanently
|
432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
433 |
+
material under section 10.
|
434 |
+
|
435 |
+
9. Acceptance Not Required for Having Copies.
|
436 |
+
|
437 |
+
You are not required to accept this License in order to receive or
|
438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
+
to receive a copy likewise does not require acceptance. However,
|
441 |
+
nothing other than this License grants you permission to propagate or
|
442 |
+
modify any covered work. These actions infringe copyright if you do
|
443 |
+
not accept this License. Therefore, by modifying or propagating a
|
444 |
+
covered work, you indicate your acceptance of this License to do so.
|
445 |
+
|
446 |
+
10. Automatic Licensing of Downstream Recipients.
|
447 |
+
|
448 |
+
Each time you convey a covered work, the recipient automatically
|
449 |
+
receives a license from the original licensors, to run, modify and
|
450 |
+
propagate that work, subject to this License. You are not responsible
|
451 |
+
for enforcing compliance by third parties with this License.
|
452 |
+
|
453 |
+
An "entity transaction" is a transaction transferring control of an
|
454 |
+
organization, or substantially all assets of one, or subdividing an
|
455 |
+
organization, or merging organizations. If propagation of a covered
|
456 |
+
work results from an entity transaction, each party to that
|
457 |
+
transaction who receives a copy of the work also receives whatever
|
458 |
+
licenses to the work the party's predecessor in interest had or could
|
459 |
+
give under the previous paragraph, plus a right to possession of the
|
460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
461 |
+
the predecessor has it or can get it with reasonable efforts.
|
462 |
+
|
463 |
+
You may not impose any further restrictions on the exercise of the
|
464 |
+
rights granted or affirmed under this License. For example, you may
|
465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
466 |
+
rights granted under this License, and you may not initiate litigation
|
467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
+
any patent claim is infringed by making, using, selling, offering for
|
469 |
+
sale, or importing the Program or any portion of it.
|
470 |
+
|
471 |
+
11. Patents.
|
472 |
+
|
473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
474 |
+
License of the Program or a work on which the Program is based. The
|
475 |
+
work thus licensed is called the contributor's "contributor version".
|
476 |
+
|
477 |
+
A contributor's "essential patent claims" are all patent claims
|
478 |
+
owned or controlled by the contributor, whether already acquired or
|
479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
+
by this License, of making, using, or selling its contributor version,
|
481 |
+
but do not include claims that would be infringed only as a
|
482 |
+
consequence of further modification of the contributor version. For
|
483 |
+
purposes of this definition, "control" includes the right to grant
|
484 |
+
patent sublicenses in a manner consistent with the requirements of
|
485 |
+
this License.
|
486 |
+
|
487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
+
patent license under the contributor's essential patent claims, to
|
489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
+
propagate the contents of its contributor version.
|
491 |
+
|
492 |
+
In the following three paragraphs, a "patent license" is any express
|
493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
494 |
+
(such as an express permission to practice a patent or covenant not to
|
495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
496 |
+
party means to make such an agreement or commitment not to enforce a
|
497 |
+
patent against the party.
|
498 |
+
|
499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
500 |
+
and the Corresponding Source of the work is not available for anyone
|
501 |
+
to copy, free of charge and under the terms of this License, through a
|
502 |
+
publicly available network server or other readily accessible means,
|
503 |
+
then you must either (1) cause the Corresponding Source to be so
|
504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
506 |
+
consistent with the requirements of this License, to extend the patent
|
507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
508 |
+
actual knowledge that, but for the patent license, your conveying the
|
509 |
+
covered work in a country, or your recipient's use of the covered work
|
510 |
+
in a country, would infringe one or more identifiable patents in that
|
511 |
+
country that you have reason to believe are valid.
|
512 |
+
|
513 |
+
If, pursuant to or in connection with a single transaction or
|
514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
+
covered work, and grant a patent license to some of the parties
|
516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
517 |
+
or convey a specific copy of the covered work, then the patent license
|
518 |
+
you grant is automatically extended to all recipients of the covered
|
519 |
+
work and works based on it.
|
520 |
+
|
521 |
+
A patent license is "discriminatory" if it does not include within
|
522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
524 |
+
specifically granted under this License. You may not convey a covered
|
525 |
+
work if you are a party to an arrangement with a third party that is
|
526 |
+
in the business of distributing software, under which you make payment
|
527 |
+
to the third party based on the extent of your activity of conveying
|
528 |
+
the work, and under which the third party grants, to any of the
|
529 |
+
parties who would receive the covered work from you, a discriminatory
|
530 |
+
patent license (a) in connection with copies of the covered work
|
531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
+
for and in connection with specific products or compilations that
|
533 |
+
contain the covered work, unless you entered into that arrangement,
|
534 |
+
or that patent license was granted, prior to 28 March 2007.
|
535 |
+
|
536 |
+
Nothing in this License shall be construed as excluding or limiting
|
537 |
+
any implied license or other defenses to infringement that may
|
538 |
+
otherwise be available to you under applicable patent law.
|
539 |
+
|
540 |
+
12. No Surrender of Others' Freedom.
|
541 |
+
|
542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
543 |
+
otherwise) that contradict the conditions of this License, they do not
|
544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
546 |
+
License and any other pertinent obligations, then as a consequence you may
|
547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
+
to collect a royalty for further conveying from those to whom you convey
|
549 |
+
the Program, the only way you could satisfy both those terms and this
|
550 |
+
License would be to refrain entirely from conveying the Program.
|
551 |
+
|
552 |
+
13. Use with the GNU Affero General Public License.
|
553 |
+
|
554 |
+
Notwithstanding any other provision of this License, you have
|
555 |
+
permission to link or combine any covered work with a work licensed
|
556 |
+
under version 3 of the GNU Affero General Public License into a single
|
557 |
+
combined work, and to convey the resulting work. The terms of this
|
558 |
+
License will continue to apply to the part which is the covered work,
|
559 |
+
but the special requirements of the GNU Affero General Public License,
|
560 |
+
section 13, concerning interaction through a network will apply to the
|
561 |
+
combination as such.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU General Public License from time to time. Such new versions will
|
567 |
+
be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU General Public License
|
648 |
+
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If the program does terminal interaction, make it output a short
|
653 |
+
notice like this when it starts in an interactive mode:
|
654 |
+
|
655 |
+
<program> Copyright (C) <year> <name of author>
|
656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
+
This is free software, and you are welcome to redistribute it
|
658 |
+
under certain conditions; type `show c' for details.
|
659 |
+
|
660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
+
parts of the General Public License. Of course, your program's commands
|
662 |
+
might be different; for a GUI interface, you would use an "about box".
|
663 |
+
|
664 |
+
You should also get your employer (if you work as a programmer) or school,
|
665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
+
<http://www.gnu.org/licenses/>.
|
668 |
+
|
669 |
+
The GNU General Public License does not permit incorporating your program
|
670 |
+
into proprietary programs. If your program is a subroutine library, you
|
671 |
+
may consider it more useful to permit linking proprietary applications with
|
672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
+
Public License instead of this License. But first, please read
|
674 |
+
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
README.md
CHANGED
@@ -1,12 +1,42 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: green
|
5 |
-
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.41.2
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
1 |
---
|
2 |
+
title: people-counting
|
3 |
+
app_file: app.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 3.41.2
|
|
|
|
|
6 |
---
|
7 |
+
## Head & Person Detection Model
|
8 |
+
|
9 |
+
### Download model trained on crowd human using yolov5(m) architeture
|
10 |
+
Download Link: [YOLOv5m-crowd-human](https://drive.google.com/file/d/1gglIwqxaH2iTvy6lZlXuAcMpd_U0GCUb/view?usp=sharing)
|
11 |
+
|
12 |
+
|
13 |
+
<br/>
|
14 |
+
|
15 |
+
**Output (Crowd Human Model)**
|
16 |
+
|
17 |
+

|
18 |
+
|
19 |
+
<br/>
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
## Test
|
24 |
+
|
25 |
+
```bash
|
26 |
+
$ python detect.py --weights crowdhuman_yolov5m.pt --source _test/ --view-img
|
27 |
+
|
28 |
+
```
|
29 |
+
|
30 |
+
|
31 |
+
## Test (Only Person Class)
|
32 |
+
|
33 |
+
```bash
|
34 |
+
python3 detect.py --weights crowdhuman_yolov5m.pt --source _test/ --view-img --person
|
35 |
+
```
|
36 |
+
|
37 |
+
|
38 |
+
## Test (Only Heads)
|
39 |
|
40 |
+
```bash
|
41 |
+
python3 detect.py --weights crowdhuman_yolov5m.pt --source _test/ --view-img --heads
|
42 |
+
```
|
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import subprocess
|
3 |
+
import os
|
4 |
+
|
5 |
+
def crowd_counting(image):
|
6 |
+
# Save the uploaded image
|
7 |
+
image_path = "test/uploaded.jpg"
|
8 |
+
image.save(image_path)
|
9 |
+
|
10 |
+
# Run the crowd counting model using subprocess
|
11 |
+
|
12 |
+
|
13 |
+
command = "python3 detect.py --weights weights/crowdhuman_yolov5m.pt --source {} --head --project runs/output --exist-ok".format(image_path)
|
14 |
+
subprocess.run(command, shell=True)
|
15 |
+
|
16 |
+
# Read the total_boxes from the file
|
17 |
+
total_boxes_path = "runs/output/output.txt"
|
18 |
+
with open(total_boxes_path, "r") as f:
|
19 |
+
total_boxes = f.read()
|
20 |
+
|
21 |
+
# Get the output image
|
22 |
+
output_image = "runs/output/output.jpg"
|
23 |
+
|
24 |
+
# Return the output image and total_boxes
|
25 |
+
return output_image, total_boxes
|
26 |
+
|
27 |
+
# Define the input and output interfaces
|
28 |
+
inputs = gr.inputs.Image(type="pil", label="Input Image")
|
29 |
+
outputs = [gr.outputs.Image(type="pil", label="Output Image"), gr.outputs.Textbox(label="Total (Head) Count")]
|
30 |
+
|
31 |
+
# Define the title and description
|
32 |
+
title = "Crowd Counting"
|
33 |
+
description = "<div style='text-align: center;'>This is a crowd counting application that uses a deep learning model to count the number of heads in an image.<br>Made by HTX (Q3) </div>"
|
34 |
+
|
35 |
+
# Create the Gradio interface without the flag button
|
36 |
+
gradio_interface = gr.Interface(fn=crowd_counting, inputs=inputs, outputs=outputs, title=title, description=description, allow_flagging="never")
|
37 |
+
|
38 |
+
# Run the Gradio interface
|
39 |
+
gradio_interface.launch()
|
data/coco128.yaml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# COCO 2017 dataset http://cocodataset.org - first 128 training images
|
2 |
+
# Train command: python train.py --data coco128.yaml
|
3 |
+
# Default dataset location is next to /yolov5:
|
4 |
+
# /parent_folder
|
5 |
+
# /coco128
|
6 |
+
# /yolov5
|
7 |
+
|
8 |
+
|
9 |
+
# download command/URL (optional)
|
10 |
+
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
|
11 |
+
|
12 |
+
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
|
13 |
+
train: ../coco128/images/train2017/ # 128 images
|
14 |
+
val: ../coco128/images/train2017/ # 128 images
|
15 |
+
|
16 |
+
# number of classes
|
17 |
+
nc: 80
|
18 |
+
|
19 |
+
# class names
|
20 |
+
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
21 |
+
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
22 |
+
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
23 |
+
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
24 |
+
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
25 |
+
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
26 |
+
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
27 |
+
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
28 |
+
'hair drier', 'toothbrush' ]
|
data/crowdhuman.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
train: train.txt
|
2 |
+
val: val.txt
|
3 |
+
test: test.txt
|
4 |
+
|
5 |
+
nc: 2
|
6 |
+
|
7 |
+
# class names
|
8 |
+
names: ['person', 'head']
|
data/hyp.finetune.yaml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hyperparameters for VOC finetuning
|
2 |
+
# python train.py --batch 64 --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50
|
3 |
+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
4 |
+
|
5 |
+
|
6 |
+
# Hyperparameter Evolution Results
|
7 |
+
# Generations: 306
|
8 |
+
# P R mAP.5 mAP.5:.95 box obj cls
|
9 |
+
# Metrics: 0.6 0.936 0.896 0.684 0.0115 0.00805 0.00146
|
10 |
+
|
11 |
+
lr0: 0.0032
|
12 |
+
lrf: 0.12
|
13 |
+
momentum: 0.843
|
14 |
+
weight_decay: 0.00036
|
15 |
+
warmup_epochs: 2.0
|
16 |
+
warmup_momentum: 0.5
|
17 |
+
warmup_bias_lr: 0.05
|
18 |
+
box: 0.0296
|
19 |
+
cls: 0.243
|
20 |
+
cls_pw: 0.631
|
21 |
+
obj: 0.301
|
22 |
+
obj_pw: 0.911
|
23 |
+
iou_t: 0.2
|
24 |
+
anchor_t: 2.91
|
25 |
+
# anchors: 3.63
|
26 |
+
fl_gamma: 0.0
|
27 |
+
hsv_h: 0.0138
|
28 |
+
hsv_s: 0.664
|
29 |
+
hsv_v: 0.464
|
30 |
+
degrees: 0.373
|
31 |
+
translate: 0.245
|
32 |
+
scale: 0.898
|
33 |
+
shear: 0.602
|
34 |
+
perspective: 0.0
|
35 |
+
flipud: 0.00856
|
36 |
+
fliplr: 0.5
|
37 |
+
mosaic: 1.0
|
38 |
+
mixup: 0.243
|
data/hyp.scratch.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hyperparameters for COCO training from scratch
|
2 |
+
# python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
|
3 |
+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
4 |
+
|
5 |
+
|
6 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
+
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
11 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
12 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
13 |
+
box: 0.05 # box loss gain
|
14 |
+
cls: 0.5 # cls loss gain
|
15 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
16 |
+
obj: 1.0 # obj loss gain (scale with pixels)
|
17 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
+
iou_t: 0.20 # IoU training threshold
|
19 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
20 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
21 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
22 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
23 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
24 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
25 |
+
degrees: 0.0 # image rotation (+/- deg)
|
26 |
+
translate: 0.1 # image translation (+/- fraction)
|
27 |
+
scale: 0.5 # image scale (+/- gain)
|
28 |
+
shear: 0.0 # image shear (+/- deg)
|
29 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
30 |
+
flipud: 0.0 # image flip up-down (probability)
|
31 |
+
fliplr: 0.5 # image flip left-right (probability)
|
32 |
+
mosaic: 1.0 # image mosaic (probability)
|
33 |
+
mixup: 0.0 # image mixup (probability)
|
data/images/bus.jpg
ADDED
![]() |
data/images/zidane.jpg
ADDED
![]() |
data/scripts/get_coco.sh
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# COCO 2017 dataset http://cocodataset.org
|
3 |
+
# Download command: bash data/scripts/get_coco.sh
|
4 |
+
# Train command: python train.py --data coco.yaml
|
5 |
+
# Default dataset location is next to /yolov5:
|
6 |
+
# /parent_folder
|
7 |
+
# /coco
|
8 |
+
# /yolov5
|
9 |
+
|
10 |
+
# Download/unzip labels
|
11 |
+
d='../' # unzip directory
|
12 |
+
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
13 |
+
f='coco2017labels.zip' # or 'coco2017labels-segments.zip', 68 MB
|
14 |
+
echo 'Downloading' $url$f ' ...'
|
15 |
+
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
|
16 |
+
|
17 |
+
# Download/unzip images
|
18 |
+
d='../coco/images' # unzip directory
|
19 |
+
url=http://images.cocodataset.org/zips/
|
20 |
+
f1='train2017.zip' # 19G, 118k images
|
21 |
+
f2='val2017.zip' # 1G, 5k images
|
22 |
+
f3='test2017.zip' # 7G, 41k images (optional)
|
23 |
+
for f in $f1 $f2; do
|
24 |
+
echo 'Downloading' $url$f '...'
|
25 |
+
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
|
26 |
+
done
|
27 |
+
wait # finish background tasks
|
data/scripts/get_voc.sh
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
|
3 |
+
# Download command: bash data/scripts/get_voc.sh
|
4 |
+
# Train command: python train.py --data voc.yaml
|
5 |
+
# Default dataset location is next to /yolov5:
|
6 |
+
# /parent_folder
|
7 |
+
# /VOC
|
8 |
+
# /yolov5
|
9 |
+
|
10 |
+
start=$(date +%s)
|
11 |
+
mkdir -p ../tmp
|
12 |
+
cd ../tmp/
|
13 |
+
|
14 |
+
# Download/unzip images and labels
|
15 |
+
d='.' # unzip directory
|
16 |
+
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
17 |
+
f1=VOCtrainval_06-Nov-2007.zip # 446MB, 5012 images
|
18 |
+
f2=VOCtest_06-Nov-2007.zip # 438MB, 4953 images
|
19 |
+
f3=VOCtrainval_11-May-2012.zip # 1.95GB, 17126 images
|
20 |
+
for f in $f3 $f2 $f1; do
|
21 |
+
echo 'Downloading' $url$f '...'
|
22 |
+
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
|
23 |
+
done
|
24 |
+
wait # finish background tasks
|
25 |
+
|
26 |
+
end=$(date +%s)
|
27 |
+
runtime=$((end - start))
|
28 |
+
echo "Completed in" $runtime "seconds"
|
29 |
+
|
30 |
+
echo "Splitting dataset..."
|
31 |
+
python3 - "$@" <<END
|
32 |
+
import xml.etree.ElementTree as ET
|
33 |
+
import pickle
|
34 |
+
import os
|
35 |
+
from os import listdir, getcwd
|
36 |
+
from os.path import join
|
37 |
+
|
38 |
+
sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
|
39 |
+
|
40 |
+
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
|
41 |
+
|
42 |
+
|
43 |
+
def convert(size, box):
|
44 |
+
dw = 1./(size[0])
|
45 |
+
dh = 1./(size[1])
|
46 |
+
x = (box[0] + box[1])/2.0 - 1
|
47 |
+
y = (box[2] + box[3])/2.0 - 1
|
48 |
+
w = box[1] - box[0]
|
49 |
+
h = box[3] - box[2]
|
50 |
+
x = x*dw
|
51 |
+
w = w*dw
|
52 |
+
y = y*dh
|
53 |
+
h = h*dh
|
54 |
+
return (x,y,w,h)
|
55 |
+
|
56 |
+
def convert_annotation(year, image_id):
|
57 |
+
in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
|
58 |
+
out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
|
59 |
+
tree=ET.parse(in_file)
|
60 |
+
root = tree.getroot()
|
61 |
+
size = root.find('size')
|
62 |
+
w = int(size.find('width').text)
|
63 |
+
h = int(size.find('height').text)
|
64 |
+
|
65 |
+
for obj in root.iter('object'):
|
66 |
+
difficult = obj.find('difficult').text
|
67 |
+
cls = obj.find('name').text
|
68 |
+
if cls not in classes or int(difficult)==1:
|
69 |
+
continue
|
70 |
+
cls_id = classes.index(cls)
|
71 |
+
xmlbox = obj.find('bndbox')
|
72 |
+
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
|
73 |
+
bb = convert((w,h), b)
|
74 |
+
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
|
75 |
+
|
76 |
+
wd = getcwd()
|
77 |
+
|
78 |
+
for year, image_set in sets:
|
79 |
+
if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
|
80 |
+
os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
|
81 |
+
image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
|
82 |
+
list_file = open('%s_%s.txt'%(year, image_set), 'w')
|
83 |
+
for image_id in image_ids:
|
84 |
+
list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
|
85 |
+
convert_annotation(year, image_id)
|
86 |
+
list_file.close()
|
87 |
+
|
88 |
+
END
|
89 |
+
|
90 |
+
cat 2007_train.txt 2007_val.txt 2012_train.txt 2012_val.txt >train.txt
|
91 |
+
cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt >train.all.txt
|
92 |
+
|
93 |
+
python3 - "$@" <<END
|
94 |
+
|
95 |
+
import shutil
|
96 |
+
import os
|
97 |
+
os.system('mkdir ../VOC/')
|
98 |
+
os.system('mkdir ../VOC/images')
|
99 |
+
os.system('mkdir ../VOC/images/train')
|
100 |
+
os.system('mkdir ../VOC/images/val')
|
101 |
+
|
102 |
+
os.system('mkdir ../VOC/labels')
|
103 |
+
os.system('mkdir ../VOC/labels/train')
|
104 |
+
os.system('mkdir ../VOC/labels/val')
|
105 |
+
|
106 |
+
import os
|
107 |
+
print(os.path.exists('../tmp/train.txt'))
|
108 |
+
f = open('../tmp/train.txt', 'r')
|
109 |
+
lines = f.readlines()
|
110 |
+
|
111 |
+
for line in lines:
|
112 |
+
line = "/".join(line.split('/')[-5:]).strip()
|
113 |
+
if (os.path.exists("../" + line)):
|
114 |
+
os.system("cp ../"+ line + " ../VOC/images/train")
|
115 |
+
|
116 |
+
line = line.replace('JPEGImages', 'labels')
|
117 |
+
line = line.replace('jpg', 'txt')
|
118 |
+
if (os.path.exists("../" + line)):
|
119 |
+
os.system("cp ../"+ line + " ../VOC/labels/train")
|
120 |
+
|
121 |
+
|
122 |
+
print(os.path.exists('../tmp/2007_test.txt'))
|
123 |
+
f = open('../tmp/2007_test.txt', 'r')
|
124 |
+
lines = f.readlines()
|
125 |
+
|
126 |
+
for line in lines:
|
127 |
+
line = "/".join(line.split('/')[-5:]).strip()
|
128 |
+
if (os.path.exists("../" + line)):
|
129 |
+
os.system("cp ../"+ line + " ../VOC/images/val")
|
130 |
+
|
131 |
+
line = line.replace('JPEGImages', 'labels')
|
132 |
+
line = line.replace('jpg', 'txt')
|
133 |
+
if (os.path.exists("../" + line)):
|
134 |
+
os.system("cp ../"+ line + " ../VOC/labels/val")
|
135 |
+
|
136 |
+
END
|
137 |
+
|
138 |
+
rm -rf ../tmp # remove temporary directory
|
139 |
+
echo "VOC download done."
|
data/voc.yaml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
|
2 |
+
# Train command: python train.py --data voc.yaml
|
3 |
+
# Default dataset location is next to /yolov5:
|
4 |
+
# /parent_folder
|
5 |
+
# /VOC
|
6 |
+
# /yolov5
|
7 |
+
|
8 |
+
|
9 |
+
# download command/URL (optional)
|
10 |
+
download: bash data/scripts/get_voc.sh
|
11 |
+
|
12 |
+
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
|
13 |
+
train: ../VOC/images/train/ # 16551 images
|
14 |
+
val: ../VOC/images/val/ # 4952 images
|
15 |
+
|
16 |
+
# number of classes
|
17 |
+
nc: 20
|
18 |
+
|
19 |
+
# class names
|
20 |
+
names: [ 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
|
21 |
+
'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ]
|
detect.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import time
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import torch.backends.cudnn as cudnn
|
8 |
+
from numpy import random
|
9 |
+
|
10 |
+
from models.experimental import attempt_load
|
11 |
+
from utils.datasets import LoadStreams, LoadImages
|
12 |
+
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
|
13 |
+
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
|
14 |
+
from utils.plots import plot_one_box
|
15 |
+
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
16 |
+
import os
|
17 |
+
|
18 |
+
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
def detect(save_img=False):
|
25 |
+
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
|
26 |
+
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
|
27 |
+
('rtsp://', 'rtmp://', 'http://'))
|
28 |
+
|
29 |
+
# Directories
|
30 |
+
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
31 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
32 |
+
|
33 |
+
# Initialize
|
34 |
+
set_logging()
|
35 |
+
device = select_device(opt.device)
|
36 |
+
half = device.type != 'cpu' # half precision only supported on CUDA
|
37 |
+
|
38 |
+
# Load model
|
39 |
+
model = attempt_load(weights, map_location=device) # load FP32 model
|
40 |
+
for m in model.modules():
|
41 |
+
if isinstance(m, nn.Upsample):
|
42 |
+
m.recompute_scale_factor = None
|
43 |
+
stride = int(model.stride.max()) # model stride
|
44 |
+
imgsz = check_img_size(imgsz, s=stride) # check img_size
|
45 |
+
if half:
|
46 |
+
model.half() # to FP16
|
47 |
+
|
48 |
+
# Second-stage classifier
|
49 |
+
classify = False
|
50 |
+
if classify:
|
51 |
+
modelc = load_classifier(name='resnet101', n=2) # initialize
|
52 |
+
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
|
53 |
+
|
54 |
+
# Set Dataloader
|
55 |
+
vid_path, vid_writer = None, None
|
56 |
+
if webcam:
|
57 |
+
view_img = check_imshow()
|
58 |
+
cudnn.benchmark = True # set True to speed up constant image size inference
|
59 |
+
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
|
60 |
+
else:
|
61 |
+
save_img = True
|
62 |
+
dataset = LoadImages(source, img_size=imgsz, stride=stride)
|
63 |
+
|
64 |
+
# Get names and colors
|
65 |
+
names = model.module.names if hasattr(model, 'module') else model.names
|
66 |
+
colors = [[255, 0, 0], [0, 255, 0]]
|
67 |
+
|
68 |
+
# Run inference
|
69 |
+
if device.type != 'cpu':
|
70 |
+
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
71 |
+
t0 = time.time()
|
72 |
+
for path, img, im0s, vid_cap in dataset:
|
73 |
+
img = torch.from_numpy(img).to(device)
|
74 |
+
img = img.half() if half else img.float() # uint8 to fp16/32
|
75 |
+
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
76 |
+
if img.ndimension() == 3:
|
77 |
+
img = img.unsqueeze(0)
|
78 |
+
|
79 |
+
# Inference
|
80 |
+
t1 = time_synchronized()
|
81 |
+
pred = model(img, augment=opt.augment)[0]
|
82 |
+
|
83 |
+
# Apply NMS
|
84 |
+
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
|
85 |
+
t2 = time_synchronized()
|
86 |
+
|
87 |
+
# Apply Classifier
|
88 |
+
if classify:
|
89 |
+
pred = apply_classifier(pred, modelc, img, im0s)
|
90 |
+
|
91 |
+
# Process detections
|
92 |
+
for i, det in enumerate(pred): # detections per image
|
93 |
+
if webcam: # batch_size >= 1
|
94 |
+
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
|
95 |
+
else:
|
96 |
+
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
|
97 |
+
|
98 |
+
p = Path(p) # to Path
|
99 |
+
save_path = str(save_dir / "output.jpg") # img.jpg
|
100 |
+
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
|
101 |
+
s += '%gx%g ' % img.shape[2:] # print string
|
102 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
103 |
+
if len(det):
|
104 |
+
# Rescale boxes from img_size to im0 size
|
105 |
+
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
106 |
+
|
107 |
+
total_heads = 0
|
108 |
+
# Print results
|
109 |
+
for c in det[:, -1].unique():
|
110 |
+
n = (det[:, -1] == c).sum() # detections per class
|
111 |
+
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
112 |
+
|
113 |
+
# Write results
|
114 |
+
for *xyxy, conf, cls in reversed(det):
|
115 |
+
if save_txt: # Write to file
|
116 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
117 |
+
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
|
118 |
+
with open(txt_path + '.txt', 'a') as f:
|
119 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
120 |
+
|
121 |
+
if save_img or view_img: # Add bbox to image
|
122 |
+
label = f'{names[int(cls)]} {conf:.2f}'
|
123 |
+
if opt.heads or opt.person:
|
124 |
+
if 'head' in label and opt.heads:
|
125 |
+
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=50)
|
126 |
+
total_heads += 1
|
127 |
+
if 'person' in label and opt.person:
|
128 |
+
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=50)
|
129 |
+
else:
|
130 |
+
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=10)
|
131 |
+
|
132 |
+
print("HERE")
|
133 |
+
print(total_heads)
|
134 |
+
|
135 |
+
with open('runs/output/output.txt', "w") as file:
|
136 |
+
file.write(str(total_heads)) # Write the string to the file
|
137 |
+
|
138 |
+
# Print time (inference + NMS)
|
139 |
+
print(f'{s}Done. ({t2 - t1:.3f}s)')
|
140 |
+
|
141 |
+
# Stream results
|
142 |
+
if view_img:
|
143 |
+
cv2.imshow(str(p), im0)
|
144 |
+
cv2.waitKey(0) # 1 millisecond
|
145 |
+
|
146 |
+
# Save results (image with detections)
|
147 |
+
if save_img:
|
148 |
+
if dataset.mode == 'image':
|
149 |
+
cv2.imwrite(save_path, im0)
|
150 |
+
else: # 'video'
|
151 |
+
if vid_path != save_path: # new video
|
152 |
+
vid_path = save_path
|
153 |
+
if isinstance(vid_writer, cv2.VideoWriter):
|
154 |
+
vid_writer.release() # release previous video writer
|
155 |
+
|
156 |
+
fourcc = 'mp4v' # output video codec
|
157 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
158 |
+
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
159 |
+
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
160 |
+
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
|
161 |
+
vid_writer.write(im0)
|
162 |
+
|
163 |
+
if save_txt or save_img:
|
164 |
+
|
165 |
+
print(f"Results saved to {save_dir}{s}")
|
166 |
+
|
167 |
+
print(f'Done. ({time.time() - t0:.3f}s)')
|
168 |
+
|
169 |
+
|
170 |
+
if __name__ == '__main__':
|
171 |
+
parser = argparse.ArgumentParser()
|
172 |
+
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
|
173 |
+
parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
|
174 |
+
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
175 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
|
176 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
177 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
178 |
+
parser.add_argument('--view-img', action='store_true', help='display results')
|
179 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
180 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
181 |
+
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
|
182 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
183 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
184 |
+
parser.add_argument('--update', action='store_true', help='update all models')
|
185 |
+
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
|
186 |
+
parser.add_argument('--name', default='', help='save results to project/name')
|
187 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
188 |
+
parser.add_argument('--person', action='store_true', help='displays only person')
|
189 |
+
parser.add_argument('--heads', action='store_true', help='displays only person')
|
190 |
+
opt = parser.parse_args()
|
191 |
+
print(opt)
|
192 |
+
check_requirements()
|
193 |
+
|
194 |
+
with torch.no_grad():
|
195 |
+
if opt.update: # update all models (to fix SourceChangeWarning)
|
196 |
+
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
|
197 |
+
detect()
|
198 |
+
strip_optimizer(opt.weights)
|
199 |
+
else:
|
200 |
+
detect()
|
hubconf.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/
|
2 |
+
|
3 |
+
Usage:
|
4 |
+
import torch
|
5 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
|
6 |
+
"""
|
7 |
+
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from models.yolo import Model
|
13 |
+
from utils.general import set_logging
|
14 |
+
from utils.google_utils import attempt_download
|
15 |
+
|
16 |
+
dependencies = ['torch', 'yaml']
|
17 |
+
set_logging()
|
18 |
+
|
19 |
+
|
20 |
+
def create(name, pretrained, channels, classes, autoshape):
|
21 |
+
"""Creates a specified YOLOv5 model
|
22 |
+
|
23 |
+
Arguments:
|
24 |
+
name (str): name of model, i.e. 'yolov5s'
|
25 |
+
pretrained (bool): load pretrained weights into the model
|
26 |
+
channels (int): number of input channels
|
27 |
+
classes (int): number of model classes
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
pytorch model
|
31 |
+
"""
|
32 |
+
config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path
|
33 |
+
try:
|
34 |
+
model = Model(config, channels, classes)
|
35 |
+
if pretrained:
|
36 |
+
fname = f'{name}.pt' # checkpoint filename
|
37 |
+
attempt_download(fname) # download if not found locally
|
38 |
+
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
|
39 |
+
state_dict = ckpt['model'].float().state_dict() # to FP32
|
40 |
+
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
|
41 |
+
model.load_state_dict(state_dict, strict=False) # load
|
42 |
+
if len(ckpt['model'].names) == classes:
|
43 |
+
model.names = ckpt['model'].names # set class names attribute
|
44 |
+
if autoshape:
|
45 |
+
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
46 |
+
return model
|
47 |
+
|
48 |
+
except Exception as e:
|
49 |
+
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
50 |
+
s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
|
51 |
+
raise Exception(s) from e
|
52 |
+
|
53 |
+
|
54 |
+
def yolov5s(pretrained=False, channels=3, classes=80, autoshape=True):
|
55 |
+
"""YOLOv5-small model from https://github.com/ultralytics/yolov5
|
56 |
+
|
57 |
+
Arguments:
|
58 |
+
pretrained (bool): load pretrained weights into the model, default=False
|
59 |
+
channels (int): number of input channels, default=3
|
60 |
+
classes (int): number of model classes, default=80
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
pytorch model
|
64 |
+
"""
|
65 |
+
return create('yolov5s', pretrained, channels, classes, autoshape)
|
66 |
+
|
67 |
+
|
68 |
+
def yolov5m(pretrained=False, channels=3, classes=80, autoshape=True):
|
69 |
+
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5
|
70 |
+
|
71 |
+
Arguments:
|
72 |
+
pretrained (bool): load pretrained weights into the model, default=False
|
73 |
+
channels (int): number of input channels, default=3
|
74 |
+
classes (int): number of model classes, default=80
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
pytorch model
|
78 |
+
"""
|
79 |
+
return create('yolov5m', pretrained, channels, classes, autoshape)
|
80 |
+
|
81 |
+
|
82 |
+
def yolov5l(pretrained=False, channels=3, classes=80, autoshape=True):
|
83 |
+
"""YOLOv5-large model from https://github.com/ultralytics/yolov5
|
84 |
+
|
85 |
+
Arguments:
|
86 |
+
pretrained (bool): load pretrained weights into the model, default=False
|
87 |
+
channels (int): number of input channels, default=3
|
88 |
+
classes (int): number of model classes, default=80
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
pytorch model
|
92 |
+
"""
|
93 |
+
return create('yolov5l', pretrained, channels, classes, autoshape)
|
94 |
+
|
95 |
+
|
96 |
+
def yolov5x(pretrained=False, channels=3, classes=80, autoshape=True):
|
97 |
+
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
|
98 |
+
|
99 |
+
Arguments:
|
100 |
+
pretrained (bool): load pretrained weights into the model, default=False
|
101 |
+
channels (int): number of input channels, default=3
|
102 |
+
classes (int): number of model classes, default=80
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
pytorch model
|
106 |
+
"""
|
107 |
+
return create('yolov5x', pretrained, channels, classes, autoshape)
|
108 |
+
|
109 |
+
|
110 |
+
def custom(path_or_model='path/to/model.pt', autoshape=True):
|
111 |
+
"""YOLOv5-custom model from https://github.com/ultralytics/yolov5
|
112 |
+
|
113 |
+
Arguments (3 options):
|
114 |
+
path_or_model (str): 'path/to/model.pt'
|
115 |
+
path_or_model (dict): torch.load('path/to/model.pt')
|
116 |
+
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
pytorch model
|
120 |
+
"""
|
121 |
+
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
|
122 |
+
if isinstance(model, dict):
|
123 |
+
model = model['model'] # load model
|
124 |
+
|
125 |
+
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
|
126 |
+
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
|
127 |
+
hub_model.names = model.names # class names
|
128 |
+
return hub_model.autoshape() if autoshape else hub_model
|
129 |
+
|
130 |
+
|
131 |
+
if __name__ == '__main__':
|
132 |
+
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
|
133 |
+
# model = custom(path_or_model='path/to/model.pt') # custom example
|
134 |
+
|
135 |
+
# Verify inference
|
136 |
+
import numpy as np
|
137 |
+
from PIL import Image
|
138 |
+
|
139 |
+
imgs = [Image.open('data/images/bus.jpg'), # PIL
|
140 |
+
'data/images/zidane.jpg', # filename
|
141 |
+
'https://github.com/ultralytics/yolov5/raw/master/data/images/bus.jpg', # URI
|
142 |
+
np.zeros((640, 480, 3))] # numpy
|
143 |
+
|
144 |
+
results = model(imgs) # batched inference
|
145 |
+
results.print()
|
146 |
+
results.save()
|
models/__init__.py
ADDED
File without changes
|
models/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (143 Bytes). View file
|
|
models/__pycache__/common.cpython-310.pyc
ADDED
Binary file (14.1 kB). View file
|
|
models/__pycache__/experimental.cpython-310.pyc
ADDED
Binary file (5.64 kB). View file
|
|
models/__pycache__/yolo.cpython-310.pyc
ADDED
Binary file (9.93 kB). View file
|
|
models/common.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file contains modules common to various models
|
2 |
+
|
3 |
+
import math
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import requests
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
from utils.datasets import letterbox
|
13 |
+
from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh
|
14 |
+
from utils.plots import color_list, plot_one_box
|
15 |
+
|
16 |
+
|
17 |
+
def autopad(k, p=None): # kernel, padding
|
18 |
+
# Pad to 'same'
|
19 |
+
if p is None:
|
20 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
21 |
+
return p
|
22 |
+
|
23 |
+
|
24 |
+
def DWConv(c1, c2, k=1, s=1, act=True):
|
25 |
+
# Depthwise convolution
|
26 |
+
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
27 |
+
|
28 |
+
|
29 |
+
class Conv(nn.Module):
|
30 |
+
# Standard convolution
|
31 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
32 |
+
super(Conv, self).__init__()
|
33 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
34 |
+
self.bn = nn.BatchNorm2d(c2)
|
35 |
+
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
return self.act(self.bn(self.conv(x)))
|
39 |
+
|
40 |
+
def fuseforward(self, x):
|
41 |
+
return self.act(self.conv(x))
|
42 |
+
|
43 |
+
|
44 |
+
class Bottleneck(nn.Module):
|
45 |
+
# Standard bottleneck
|
46 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
47 |
+
super(Bottleneck, self).__init__()
|
48 |
+
c_ = int(c2 * e) # hidden channels
|
49 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
50 |
+
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
51 |
+
self.add = shortcut and c1 == c2
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
55 |
+
|
56 |
+
|
57 |
+
class BottleneckCSP(nn.Module):
|
58 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
59 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
60 |
+
super(BottleneckCSP, self).__init__()
|
61 |
+
c_ = int(c2 * e) # hidden channels
|
62 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
63 |
+
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
64 |
+
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
65 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
66 |
+
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
67 |
+
self.act = nn.LeakyReLU(0.1, inplace=True)
|
68 |
+
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
72 |
+
y2 = self.cv2(x)
|
73 |
+
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
|
74 |
+
|
75 |
+
|
76 |
+
class C3(nn.Module):
|
77 |
+
# CSP Bottleneck with 3 convolutions
|
78 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
79 |
+
super(C3, self).__init__()
|
80 |
+
c_ = int(c2 * e) # hidden channels
|
81 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
82 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
83 |
+
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
|
84 |
+
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
85 |
+
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
|
89 |
+
|
90 |
+
|
91 |
+
class SPP(nn.Module):
|
92 |
+
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
93 |
+
def __init__(self, c1, c2, k=(5, 9, 13)):
|
94 |
+
super(SPP, self).__init__()
|
95 |
+
c_ = c1 // 2 # hidden channels
|
96 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
97 |
+
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
98 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
x = self.cv1(x)
|
102 |
+
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
103 |
+
|
104 |
+
|
105 |
+
class Focus(nn.Module):
|
106 |
+
# Focus wh information into c-space
|
107 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
108 |
+
super(Focus, self).__init__()
|
109 |
+
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
110 |
+
# self.contract = Contract(gain=2)
|
111 |
+
|
112 |
+
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
113 |
+
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
|
114 |
+
# return self.conv(self.contract(x))
|
115 |
+
|
116 |
+
|
117 |
+
class Contract(nn.Module):
|
118 |
+
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
119 |
+
def __init__(self, gain=2):
|
120 |
+
super().__init__()
|
121 |
+
self.gain = gain
|
122 |
+
|
123 |
+
def forward(self, x):
|
124 |
+
N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
|
125 |
+
s = self.gain
|
126 |
+
x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
|
127 |
+
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
128 |
+
return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
|
129 |
+
|
130 |
+
|
131 |
+
class Expand(nn.Module):
|
132 |
+
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
133 |
+
def __init__(self, gain=2):
|
134 |
+
super().__init__()
|
135 |
+
self.gain = gain
|
136 |
+
|
137 |
+
def forward(self, x):
|
138 |
+
N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
139 |
+
s = self.gain
|
140 |
+
x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
|
141 |
+
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
142 |
+
return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
|
143 |
+
|
144 |
+
|
145 |
+
class Concat(nn.Module):
|
146 |
+
# Concatenate a list of tensors along dimension
|
147 |
+
def __init__(self, dimension=1):
|
148 |
+
super(Concat, self).__init__()
|
149 |
+
self.d = dimension
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
return torch.cat(x, self.d)
|
153 |
+
|
154 |
+
|
155 |
+
class NMS(nn.Module):
|
156 |
+
# Non-Maximum Suppression (NMS) module
|
157 |
+
conf = 0.25 # confidence threshold
|
158 |
+
iou = 0.45 # IoU threshold
|
159 |
+
classes = None # (optional list) filter by class
|
160 |
+
|
161 |
+
def __init__(self):
|
162 |
+
super(NMS, self).__init__()
|
163 |
+
|
164 |
+
def forward(self, x):
|
165 |
+
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
|
166 |
+
|
167 |
+
|
168 |
+
class autoShape(nn.Module):
|
169 |
+
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
170 |
+
img_size = 640 # inference size (pixels)
|
171 |
+
conf = 0.25 # NMS confidence threshold
|
172 |
+
iou = 0.45 # NMS IoU threshold
|
173 |
+
classes = None # (optional list) filter by class
|
174 |
+
|
175 |
+
def __init__(self, model):
|
176 |
+
super(autoShape, self).__init__()
|
177 |
+
self.model = model.eval()
|
178 |
+
|
179 |
+
def autoshape(self):
|
180 |
+
print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
|
181 |
+
return self
|
182 |
+
|
183 |
+
def forward(self, imgs, size=640, augment=False, profile=False):
|
184 |
+
# Inference from various sources. For height=720, width=1280, RGB images example inputs are:
|
185 |
+
# filename: imgs = 'data/samples/zidane.jpg'
|
186 |
+
# URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
|
187 |
+
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
|
188 |
+
# PIL: = Image.open('image.jpg') # HWC x(720,1280,3)
|
189 |
+
# numpy: = np.zeros((720,1280,3)) # HWC
|
190 |
+
# torch: = torch.zeros(16,3,720,1280) # BCHW
|
191 |
+
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
192 |
+
|
193 |
+
p = next(self.model.parameters()) # for device and type
|
194 |
+
if isinstance(imgs, torch.Tensor): # torch
|
195 |
+
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
196 |
+
|
197 |
+
# Pre-process
|
198 |
+
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
|
199 |
+
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
200 |
+
for i, im in enumerate(imgs):
|
201 |
+
if isinstance(im, str): # filename or uri
|
202 |
+
im, f = Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im), im # open
|
203 |
+
im.filename = f # for uri
|
204 |
+
files.append(Path(im.filename).with_suffix('.jpg').name if isinstance(im, Image.Image) else f'image{i}.jpg')
|
205 |
+
im = np.array(im) # to numpy
|
206 |
+
if im.shape[0] < 5: # image in CHW
|
207 |
+
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
208 |
+
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
|
209 |
+
s = im.shape[:2] # HWC
|
210 |
+
shape0.append(s) # image shape
|
211 |
+
g = (size / max(s)) # gain
|
212 |
+
shape1.append([y * g for y in s])
|
213 |
+
imgs[i] = im # update
|
214 |
+
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
|
215 |
+
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
|
216 |
+
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
|
217 |
+
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
|
218 |
+
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
|
219 |
+
|
220 |
+
# Inference
|
221 |
+
with torch.no_grad():
|
222 |
+
y = self.model(x, augment, profile)[0] # forward
|
223 |
+
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
|
224 |
+
|
225 |
+
# Post-process
|
226 |
+
for i in range(n):
|
227 |
+
scale_coords(shape1, y[i][:, :4], shape0[i])
|
228 |
+
|
229 |
+
return Detections(imgs, y, files, self.names)
|
230 |
+
|
231 |
+
|
232 |
+
class Detections:
|
233 |
+
# detections class for YOLOv5 inference results
|
234 |
+
def __init__(self, imgs, pred, files, names=None):
|
235 |
+
super(Detections, self).__init__()
|
236 |
+
d = pred[0].device # device
|
237 |
+
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
|
238 |
+
self.imgs = imgs # list of images as numpy arrays
|
239 |
+
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
240 |
+
self.names = names # class names
|
241 |
+
self.files = files # image filenames
|
242 |
+
self.xyxy = pred # xyxy pixels
|
243 |
+
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
244 |
+
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
245 |
+
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
246 |
+
self.n = len(self.pred)
|
247 |
+
|
248 |
+
def display(self, pprint=False, show=False, save=False, render=False, save_dir=''):
|
249 |
+
colors = color_list()
|
250 |
+
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
|
251 |
+
str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
|
252 |
+
if pred is not None:
|
253 |
+
for c in pred[:, -1].unique():
|
254 |
+
n = (pred[:, -1] == c).sum() # detections per class
|
255 |
+
str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
256 |
+
if show or save or render:
|
257 |
+
for *box, conf, cls in pred: # xyxy, confidence, class
|
258 |
+
label = f'{self.names[int(cls)]} {conf:.2f}'
|
259 |
+
plot_one_box(box, img, label=label, color=colors[int(cls) % 10])
|
260 |
+
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
|
261 |
+
if pprint:
|
262 |
+
print(str.rstrip(', '))
|
263 |
+
if show:
|
264 |
+
img.show(self.files[i]) # show
|
265 |
+
if save:
|
266 |
+
f = Path(save_dir) / self.files[i]
|
267 |
+
img.save(f) # save
|
268 |
+
print(f"{'Saving' * (i == 0)} {f},", end='' if i < self.n - 1 else ' done.\n')
|
269 |
+
if render:
|
270 |
+
self.imgs[i] = np.asarray(img)
|
271 |
+
|
272 |
+
def print(self):
|
273 |
+
self.display(pprint=True) # print results
|
274 |
+
|
275 |
+
def show(self):
|
276 |
+
self.display(show=True) # show results
|
277 |
+
|
278 |
+
def save(self, save_dir='results/'):
|
279 |
+
Path(save_dir).mkdir(exist_ok=True)
|
280 |
+
self.display(save=True, save_dir=save_dir) # save results
|
281 |
+
|
282 |
+
def render(self):
|
283 |
+
self.display(render=True) # render results
|
284 |
+
return self.imgs
|
285 |
+
|
286 |
+
def __len__(self):
|
287 |
+
return self.n
|
288 |
+
|
289 |
+
def tolist(self):
|
290 |
+
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
291 |
+
x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
|
292 |
+
for d in x:
|
293 |
+
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
294 |
+
setattr(d, k, getattr(d, k)[0]) # pop out of list
|
295 |
+
return x
|
296 |
+
|
297 |
+
|
298 |
+
class Classify(nn.Module):
|
299 |
+
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
300 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
301 |
+
super(Classify, self).__init__()
|
302 |
+
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
|
303 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
|
304 |
+
self.flat = nn.Flatten()
|
305 |
+
|
306 |
+
def forward(self, x):
|
307 |
+
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
308 |
+
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
models/experimental.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file contains experimental modules
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from models.common import Conv, DWConv
|
8 |
+
from utils.google_utils import attempt_download
|
9 |
+
|
10 |
+
|
11 |
+
class CrossConv(nn.Module):
|
12 |
+
# Cross Convolution Downsample
|
13 |
+
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
14 |
+
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
15 |
+
super(CrossConv, self).__init__()
|
16 |
+
c_ = int(c2 * e) # hidden channels
|
17 |
+
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
18 |
+
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
19 |
+
self.add = shortcut and c1 == c2
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
23 |
+
|
24 |
+
|
25 |
+
class Sum(nn.Module):
|
26 |
+
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
27 |
+
def __init__(self, n, weight=False): # n: number of inputs
|
28 |
+
super(Sum, self).__init__()
|
29 |
+
self.weight = weight # apply weights boolean
|
30 |
+
self.iter = range(n - 1) # iter object
|
31 |
+
if weight:
|
32 |
+
self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
y = x[0] # no weight
|
36 |
+
if self.weight:
|
37 |
+
w = torch.sigmoid(self.w) * 2
|
38 |
+
for i in self.iter:
|
39 |
+
y = y + x[i + 1] * w[i]
|
40 |
+
else:
|
41 |
+
for i in self.iter:
|
42 |
+
y = y + x[i + 1]
|
43 |
+
return y
|
44 |
+
|
45 |
+
|
46 |
+
class GhostConv(nn.Module):
|
47 |
+
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
48 |
+
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
49 |
+
super(GhostConv, self).__init__()
|
50 |
+
c_ = c2 // 2 # hidden channels
|
51 |
+
self.cv1 = Conv(c1, c_, k, s, None, g, act)
|
52 |
+
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
y = self.cv1(x)
|
56 |
+
return torch.cat([y, self.cv2(y)], 1)
|
57 |
+
|
58 |
+
|
59 |
+
class GhostBottleneck(nn.Module):
|
60 |
+
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
61 |
+
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
62 |
+
super(GhostBottleneck, self).__init__()
|
63 |
+
c_ = c2 // 2
|
64 |
+
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
|
65 |
+
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
66 |
+
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
67 |
+
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
|
68 |
+
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
return self.conv(x) + self.shortcut(x)
|
72 |
+
|
73 |
+
|
74 |
+
class MixConv2d(nn.Module):
|
75 |
+
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
|
76 |
+
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
|
77 |
+
super(MixConv2d, self).__init__()
|
78 |
+
groups = len(k)
|
79 |
+
if equal_ch: # equal c_ per group
|
80 |
+
i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
|
81 |
+
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
|
82 |
+
else: # equal weight.numel() per group
|
83 |
+
b = [c2] + [0] * groups
|
84 |
+
a = np.eye(groups + 1, groups, k=-1)
|
85 |
+
a -= np.roll(a, 1, axis=1)
|
86 |
+
a *= np.array(k) ** 2
|
87 |
+
a[0] = 1
|
88 |
+
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
89 |
+
|
90 |
+
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
|
91 |
+
self.bn = nn.BatchNorm2d(c2)
|
92 |
+
self.act = nn.LeakyReLU(0.1, inplace=True)
|
93 |
+
|
94 |
+
def forward(self, x):
|
95 |
+
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
96 |
+
|
97 |
+
|
98 |
+
class Ensemble(nn.ModuleList):
|
99 |
+
# Ensemble of models
|
100 |
+
def __init__(self):
|
101 |
+
super(Ensemble, self).__init__()
|
102 |
+
|
103 |
+
def forward(self, x, augment=False):
|
104 |
+
y = []
|
105 |
+
for module in self:
|
106 |
+
y.append(module(x, augment)[0])
|
107 |
+
# y = torch.stack(y).max(0)[0] # max ensemble
|
108 |
+
# y = torch.stack(y).mean(0) # mean ensemble
|
109 |
+
y = torch.cat(y, 1) # nms ensemble
|
110 |
+
return y, None # inference, train output
|
111 |
+
|
112 |
+
|
113 |
+
def attempt_load(weights, map_location=None):
|
114 |
+
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
115 |
+
model = Ensemble()
|
116 |
+
for w in weights if isinstance(weights, list) else [weights]:
|
117 |
+
attempt_download(w)
|
118 |
+
model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model
|
119 |
+
|
120 |
+
# Compatibility updates
|
121 |
+
for m in model.modules():
|
122 |
+
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
|
123 |
+
m.inplace = True # pytorch 1.7.0 compatibility
|
124 |
+
elif type(m) is Conv:
|
125 |
+
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
126 |
+
|
127 |
+
if len(model) == 1:
|
128 |
+
return model[-1] # return model
|
129 |
+
else:
|
130 |
+
print('Ensemble created with %s\n' % weights)
|
131 |
+
for k in ['names', 'stride']:
|
132 |
+
setattr(model, k, getattr(model[-1], k))
|
133 |
+
return model # return ensemble
|
models/export.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
|
2 |
+
|
3 |
+
Usage:
|
4 |
+
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
|
5 |
+
"""
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import sys
|
9 |
+
import time
|
10 |
+
|
11 |
+
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
|
16 |
+
import models
|
17 |
+
from models.experimental import attempt_load
|
18 |
+
from utils.activations import Hardswish, SiLU
|
19 |
+
from utils.general import set_logging, check_img_size
|
20 |
+
|
21 |
+
if __name__ == '__main__':
|
22 |
+
parser = argparse.ArgumentParser()
|
23 |
+
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
|
24 |
+
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
25 |
+
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
|
26 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
27 |
+
opt = parser.parse_args()
|
28 |
+
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
29 |
+
print(opt)
|
30 |
+
set_logging()
|
31 |
+
t = time.time()
|
32 |
+
|
33 |
+
# Load PyTorch model
|
34 |
+
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model
|
35 |
+
labels = model.names
|
36 |
+
|
37 |
+
# Checks
|
38 |
+
gs = int(max(model.stride)) # grid size (max stride)
|
39 |
+
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
40 |
+
|
41 |
+
# Input
|
42 |
+
img = torch.zeros(opt.batch_size, 3, *opt.img_size) # image size(1,3,320,192) iDetection
|
43 |
+
|
44 |
+
# Update model
|
45 |
+
for k, m in model.named_modules():
|
46 |
+
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
47 |
+
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
48 |
+
if isinstance(m.act, nn.Hardswish):
|
49 |
+
m.act = Hardswish()
|
50 |
+
elif isinstance(m.act, nn.SiLU):
|
51 |
+
m.act = SiLU()
|
52 |
+
# elif isinstance(m, models.yolo.Detect):
|
53 |
+
# m.forward = m.forward_export # assign forward (optional)
|
54 |
+
model.model[-1].export = True # set Detect() layer export=True
|
55 |
+
y = model(img) # dry run
|
56 |
+
|
57 |
+
# TorchScript export
|
58 |
+
try:
|
59 |
+
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
|
60 |
+
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
|
61 |
+
ts = torch.jit.trace(model, img)
|
62 |
+
ts.save(f)
|
63 |
+
print('TorchScript export success, saved as %s' % f)
|
64 |
+
except Exception as e:
|
65 |
+
print('TorchScript export failure: %s' % e)
|
66 |
+
|
67 |
+
# ONNX export
|
68 |
+
try:
|
69 |
+
import onnx
|
70 |
+
|
71 |
+
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
|
72 |
+
f = opt.weights.replace('.pt', '.onnx') # filename
|
73 |
+
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
|
74 |
+
output_names=['classes', 'boxes'] if y is None else ['output'],
|
75 |
+
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
|
76 |
+
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
|
77 |
+
|
78 |
+
# Checks
|
79 |
+
onnx_model = onnx.load(f) # load onnx model
|
80 |
+
onnx.checker.check_model(onnx_model) # check onnx model
|
81 |
+
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
82 |
+
print('ONNX export success, saved as %s' % f)
|
83 |
+
except Exception as e:
|
84 |
+
print('ONNX export failure: %s' % e)
|
85 |
+
|
86 |
+
# CoreML export
|
87 |
+
try:
|
88 |
+
import coremltools as ct
|
89 |
+
|
90 |
+
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
|
91 |
+
# convert model from torchscript and apply pixel scaling as per detect.py
|
92 |
+
model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
93 |
+
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
94 |
+
model.save(f)
|
95 |
+
print('CoreML export success, saved as %s' % f)
|
96 |
+
except Exception as e:
|
97 |
+
print('CoreML export failure: %s' % e)
|
98 |
+
|
99 |
+
# Finish
|
100 |
+
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
|
models/hub/anchors.yaml
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default YOLOv5 anchors for COCO data
|
2 |
+
|
3 |
+
|
4 |
+
# P5 -------------------------------------------------------------------------------------------------------------------
|
5 |
+
# P5-640:
|
6 |
+
anchors_p5_640:
|
7 |
+
- [ 10,13, 16,30, 33,23 ] # P3/8
|
8 |
+
- [ 30,61, 62,45, 59,119 ] # P4/16
|
9 |
+
- [ 116,90, 156,198, 373,326 ] # P5/32
|
10 |
+
|
11 |
+
|
12 |
+
# P6 -------------------------------------------------------------------------------------------------------------------
|
13 |
+
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
|
14 |
+
anchors_p6_640:
|
15 |
+
- [ 9,11, 21,19, 17,41 ] # P3/8
|
16 |
+
- [ 43,32, 39,70, 86,64 ] # P4/16
|
17 |
+
- [ 65,131, 134,130, 120,265 ] # P5/32
|
18 |
+
- [ 282,180, 247,354, 512,387 ] # P6/64
|
19 |
+
|
20 |
+
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
|
21 |
+
anchors_p6_1280:
|
22 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
23 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
24 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
25 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
26 |
+
|
27 |
+
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
|
28 |
+
anchors_p6_1920:
|
29 |
+
- [ 28,41, 67,59, 57,141 ] # P3/8
|
30 |
+
- [ 144,103, 129,227, 270,205 ] # P4/16
|
31 |
+
- [ 209,452, 455,396, 358,812 ] # P5/32
|
32 |
+
- [ 653,922, 1109,570, 1387,1187 ] # P6/64
|
33 |
+
|
34 |
+
|
35 |
+
# P7 -------------------------------------------------------------------------------------------------------------------
|
36 |
+
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
|
37 |
+
anchors_p7_640:
|
38 |
+
- [ 11,11, 13,30, 29,20 ] # P3/8
|
39 |
+
- [ 30,46, 61,38, 39,92 ] # P4/16
|
40 |
+
- [ 78,80, 146,66, 79,163 ] # P5/32
|
41 |
+
- [ 149,150, 321,143, 157,303 ] # P6/64
|
42 |
+
- [ 257,402, 359,290, 524,372 ] # P7/128
|
43 |
+
|
44 |
+
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
|
45 |
+
anchors_p7_1280:
|
46 |
+
- [ 19,22, 54,36, 32,77 ] # P3/8
|
47 |
+
- [ 70,83, 138,71, 75,173 ] # P4/16
|
48 |
+
- [ 165,159, 148,334, 375,151 ] # P5/32
|
49 |
+
- [ 334,317, 251,626, 499,474 ] # P6/64
|
50 |
+
- [ 750,326, 534,814, 1079,818 ] # P7/128
|
51 |
+
|
52 |
+
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
|
53 |
+
anchors_p7_1920:
|
54 |
+
- [ 29,34, 81,55, 47,115 ] # P3/8
|
55 |
+
- [ 105,124, 207,107, 113,259 ] # P4/16
|
56 |
+
- [ 247,238, 222,500, 563,227 ] # P5/32
|
57 |
+
- [ 501,476, 376,939, 749,711 ] # P6/64
|
58 |
+
- [ 1126,489, 801,1222, 1618,1227 ] # P7/128
|
models/hub/yolov3-spp.yaml
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# darknet53 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
+
[-1, 1, Bottleneck, [64]],
|
18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
+
[-1, 2, Bottleneck, [128]],
|
20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
+
[-1, 8, Bottleneck, [256]],
|
22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
+
[-1, 8, Bottleneck, [512]],
|
24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
+
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
+
]
|
27 |
+
|
28 |
+
# YOLOv3-SPP head
|
29 |
+
head:
|
30 |
+
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
+
[-1, 1, SPP, [512, [5, 9, 13]]],
|
32 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
35 |
+
|
36 |
+
[-2, 1, Conv, [256, 1, 1]],
|
37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
39 |
+
[-1, 1, Bottleneck, [512, False]],
|
40 |
+
[-1, 1, Bottleneck, [512, False]],
|
41 |
+
[-1, 1, Conv, [256, 1, 1]],
|
42 |
+
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
43 |
+
|
44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
45 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
46 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
47 |
+
[-1, 1, Bottleneck, [256, False]],
|
48 |
+
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
49 |
+
|
50 |
+
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
51 |
+
]
|
models/hub/yolov3-tiny.yaml
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,14, 23,27, 37,58] # P4/16
|
9 |
+
- [81,82, 135,169, 344,319] # P5/32
|
10 |
+
|
11 |
+
# YOLOv3-tiny backbone
|
12 |
+
backbone:
|
13 |
+
# [from, number, module, args]
|
14 |
+
[[-1, 1, Conv, [16, 3, 1]], # 0
|
15 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
|
16 |
+
[-1, 1, Conv, [32, 3, 1]],
|
17 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
|
18 |
+
[-1, 1, Conv, [64, 3, 1]],
|
19 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
|
20 |
+
[-1, 1, Conv, [128, 3, 1]],
|
21 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
|
22 |
+
[-1, 1, Conv, [256, 3, 1]],
|
23 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
|
24 |
+
[-1, 1, Conv, [512, 3, 1]],
|
25 |
+
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
|
26 |
+
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
|
27 |
+
]
|
28 |
+
|
29 |
+
# YOLOv3-tiny head
|
30 |
+
head:
|
31 |
+
[[-1, 1, Conv, [1024, 3, 1]],
|
32 |
+
[-1, 1, Conv, [256, 1, 1]],
|
33 |
+
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
|
34 |
+
|
35 |
+
[-2, 1, Conv, [128, 1, 1]],
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
38 |
+
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
|
39 |
+
|
40 |
+
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
|
41 |
+
]
|
models/hub/yolov3.yaml
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# darknet53 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
+
[-1, 1, Bottleneck, [64]],
|
18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
+
[-1, 2, Bottleneck, [128]],
|
20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
+
[-1, 8, Bottleneck, [256]],
|
22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
+
[-1, 8, Bottleneck, [512]],
|
24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
+
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
+
]
|
27 |
+
|
28 |
+
# YOLOv3 head
|
29 |
+
head:
|
30 |
+
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
+
[-1, 1, Conv, [512, [1, 1]]],
|
32 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
35 |
+
|
36 |
+
[-2, 1, Conv, [256, 1, 1]],
|
37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
39 |
+
[-1, 1, Bottleneck, [512, False]],
|
40 |
+
[-1, 1, Bottleneck, [512, False]],
|
41 |
+
[-1, 1, Conv, [256, 1, 1]],
|
42 |
+
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
43 |
+
|
44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
45 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
46 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
47 |
+
[-1, 1, Bottleneck, [256, False]],
|
48 |
+
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
49 |
+
|
50 |
+
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
51 |
+
]
|
models/hub/yolov5-fpn.yaml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, Bottleneck, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 6, BottleneckCSP, [1024]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 FPN head
|
28 |
+
head:
|
29 |
+
[[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large)
|
30 |
+
|
31 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium)
|
35 |
+
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
38 |
+
[-1, 1, Conv, [256, 1, 1]],
|
39 |
+
[-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small)
|
40 |
+
|
41 |
+
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
42 |
+
]
|
models/hub/yolov5-p2.yaml
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors: 3
|
8 |
+
|
9 |
+
# YOLOv5 backbone
|
10 |
+
backbone:
|
11 |
+
# [from, number, module, args]
|
12 |
+
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
13 |
+
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
14 |
+
[ -1, 3, C3, [ 128 ] ],
|
15 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
16 |
+
[ -1, 9, C3, [ 256 ] ],
|
17 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
18 |
+
[ -1, 9, C3, [ 512 ] ],
|
19 |
+
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
|
20 |
+
[ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ],
|
21 |
+
[ -1, 3, C3, [ 1024, False ] ], # 9
|
22 |
+
]
|
23 |
+
|
24 |
+
# YOLOv5 head
|
25 |
+
head:
|
26 |
+
[ [ -1, 1, Conv, [ 512, 1, 1 ] ],
|
27 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
28 |
+
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
29 |
+
[ -1, 3, C3, [ 512, False ] ], # 13
|
30 |
+
|
31 |
+
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
32 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
33 |
+
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
34 |
+
[ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
|
35 |
+
|
36 |
+
[ -1, 1, Conv, [ 128, 1, 1 ] ],
|
37 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
38 |
+
[ [ -1, 2 ], 1, Concat, [ 1 ] ], # cat backbone P2
|
39 |
+
[ -1, 1, C3, [ 128, False ] ], # 21 (P2/4-xsmall)
|
40 |
+
|
41 |
+
[ -1, 1, Conv, [ 128, 3, 2 ] ],
|
42 |
+
[ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P3
|
43 |
+
[ -1, 3, C3, [ 256, False ] ], # 24 (P3/8-small)
|
44 |
+
|
45 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
46 |
+
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
|
47 |
+
[ -1, 3, C3, [ 512, False ] ], # 27 (P4/16-medium)
|
48 |
+
|
49 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
50 |
+
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5
|
51 |
+
[ -1, 3, C3, [ 1024, False ] ], # 30 (P5/32-large)
|
52 |
+
|
53 |
+
[ [ 24, 27, 30 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
|
54 |
+
]
|
models/hub/yolov5-p6.yaml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors: 3
|
8 |
+
|
9 |
+
# YOLOv5 backbone
|
10 |
+
backbone:
|
11 |
+
# [from, number, module, args]
|
12 |
+
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
13 |
+
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
14 |
+
[ -1, 3, C3, [ 128 ] ],
|
15 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
16 |
+
[ -1, 9, C3, [ 256 ] ],
|
17 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
18 |
+
[ -1, 9, C3, [ 512 ] ],
|
19 |
+
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
|
20 |
+
[ -1, 3, C3, [ 768 ] ],
|
21 |
+
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
|
22 |
+
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
|
23 |
+
[ -1, 3, C3, [ 1024, False ] ], # 11
|
24 |
+
]
|
25 |
+
|
26 |
+
# YOLOv5 head
|
27 |
+
head:
|
28 |
+
[ [ -1, 1, Conv, [ 768, 1, 1 ] ],
|
29 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
30 |
+
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
|
31 |
+
[ -1, 3, C3, [ 768, False ] ], # 15
|
32 |
+
|
33 |
+
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
34 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
35 |
+
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
36 |
+
[ -1, 3, C3, [ 512, False ] ], # 19
|
37 |
+
|
38 |
+
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
39 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
40 |
+
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
41 |
+
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
|
42 |
+
|
43 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
44 |
+
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
|
45 |
+
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
|
46 |
+
|
47 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
48 |
+
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
|
49 |
+
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
|
50 |
+
|
51 |
+
[ -1, 1, Conv, [ 768, 3, 2 ] ],
|
52 |
+
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
|
53 |
+
[ -1, 3, C3, [ 1024, False ] ], # 32 (P5/64-xlarge)
|
54 |
+
|
55 |
+
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
|
56 |
+
]
|
models/hub/yolov5-p7.yaml
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors: 3
|
8 |
+
|
9 |
+
# YOLOv5 backbone
|
10 |
+
backbone:
|
11 |
+
# [from, number, module, args]
|
12 |
+
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
13 |
+
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
14 |
+
[ -1, 3, C3, [ 128 ] ],
|
15 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
16 |
+
[ -1, 9, C3, [ 256 ] ],
|
17 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
18 |
+
[ -1, 9, C3, [ 512 ] ],
|
19 |
+
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
|
20 |
+
[ -1, 3, C3, [ 768 ] ],
|
21 |
+
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
|
22 |
+
[ -1, 3, C3, [ 1024 ] ],
|
23 |
+
[ -1, 1, Conv, [ 1280, 3, 2 ] ], # 11-P7/128
|
24 |
+
[ -1, 1, SPP, [ 1280, [ 3, 5 ] ] ],
|
25 |
+
[ -1, 3, C3, [ 1280, False ] ], # 13
|
26 |
+
]
|
27 |
+
|
28 |
+
# YOLOv5 head
|
29 |
+
head:
|
30 |
+
[ [ -1, 1, Conv, [ 1024, 1, 1 ] ],
|
31 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
32 |
+
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat backbone P6
|
33 |
+
[ -1, 3, C3, [ 1024, False ] ], # 17
|
34 |
+
|
35 |
+
[ -1, 1, Conv, [ 768, 1, 1 ] ],
|
36 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
37 |
+
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
|
38 |
+
[ -1, 3, C3, [ 768, False ] ], # 21
|
39 |
+
|
40 |
+
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
41 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
42 |
+
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
43 |
+
[ -1, 3, C3, [ 512, False ] ], # 25
|
44 |
+
|
45 |
+
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
46 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
47 |
+
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
48 |
+
[ -1, 3, C3, [ 256, False ] ], # 29 (P3/8-small)
|
49 |
+
|
50 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
51 |
+
[ [ -1, 26 ], 1, Concat, [ 1 ] ], # cat head P4
|
52 |
+
[ -1, 3, C3, [ 512, False ] ], # 32 (P4/16-medium)
|
53 |
+
|
54 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
55 |
+
[ [ -1, 22 ], 1, Concat, [ 1 ] ], # cat head P5
|
56 |
+
[ -1, 3, C3, [ 768, False ] ], # 35 (P5/32-large)
|
57 |
+
|
58 |
+
[ -1, 1, Conv, [ 768, 3, 2 ] ],
|
59 |
+
[ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P6
|
60 |
+
[ -1, 3, C3, [ 1024, False ] ], # 38 (P6/64-xlarge)
|
61 |
+
|
62 |
+
[ -1, 1, Conv, [ 1024, 3, 2 ] ],
|
63 |
+
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P7
|
64 |
+
[ -1, 3, C3, [ 1280, False ] ], # 41 (P7/128-xxlarge)
|
65 |
+
|
66 |
+
[ [ 29, 32, 35, 38, 41 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6, P7)
|
67 |
+
]
|
models/hub/yolov5-panet.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, BottleneckCSP, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 3, BottleneckCSP, [1024, False]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 PANet head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, BottleneckCSP, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
models/hub/yolov5l6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
17 |
+
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
18 |
+
[ -1, 3, C3, [ 128 ] ],
|
19 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
20 |
+
[ -1, 9, C3, [ 256 ] ],
|
21 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
22 |
+
[ -1, 9, C3, [ 512 ] ],
|
23 |
+
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
|
24 |
+
[ -1, 3, C3, [ 768 ] ],
|
25 |
+
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
|
26 |
+
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
|
27 |
+
[ -1, 3, C3, [ 1024, False ] ], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 head
|
31 |
+
head:
|
32 |
+
[ [ -1, 1, Conv, [ 768, 1, 1 ] ],
|
33 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
34 |
+
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
|
35 |
+
[ -1, 3, C3, [ 768, False ] ], # 15
|
36 |
+
|
37 |
+
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
38 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
39 |
+
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
40 |
+
[ -1, 3, C3, [ 512, False ] ], # 19
|
41 |
+
|
42 |
+
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
43 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
44 |
+
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
45 |
+
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
48 |
+
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
|
49 |
+
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
52 |
+
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
|
53 |
+
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[ -1, 1, Conv, [ 768, 3, 2 ] ],
|
56 |
+
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
|
57 |
+
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
models/hub/yolov5m6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 0.67 # model depth multiple
|
4 |
+
width_multiple: 0.75 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
17 |
+
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
18 |
+
[ -1, 3, C3, [ 128 ] ],
|
19 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
20 |
+
[ -1, 9, C3, [ 256 ] ],
|
21 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
22 |
+
[ -1, 9, C3, [ 512 ] ],
|
23 |
+
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
|
24 |
+
[ -1, 3, C3, [ 768 ] ],
|
25 |
+
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
|
26 |
+
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
|
27 |
+
[ -1, 3, C3, [ 1024, False ] ], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 head
|
31 |
+
head:
|
32 |
+
[ [ -1, 1, Conv, [ 768, 1, 1 ] ],
|
33 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
34 |
+
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
|
35 |
+
[ -1, 3, C3, [ 768, False ] ], # 15
|
36 |
+
|
37 |
+
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
38 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
39 |
+
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
40 |
+
[ -1, 3, C3, [ 512, False ] ], # 19
|
41 |
+
|
42 |
+
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
43 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
44 |
+
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
45 |
+
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
48 |
+
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
|
49 |
+
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
52 |
+
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
|
53 |
+
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[ -1, 1, Conv, [ 768, 3, 2 ] ],
|
56 |
+
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
|
57 |
+
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
models/hub/yolov5s6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 0.33 # model depth multiple
|
4 |
+
width_multiple: 0.50 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
17 |
+
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
18 |
+
[ -1, 3, C3, [ 128 ] ],
|
19 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
20 |
+
[ -1, 9, C3, [ 256 ] ],
|
21 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
22 |
+
[ -1, 9, C3, [ 512 ] ],
|
23 |
+
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
|
24 |
+
[ -1, 3, C3, [ 768 ] ],
|
25 |
+
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
|
26 |
+
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
|
27 |
+
[ -1, 3, C3, [ 1024, False ] ], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 head
|
31 |
+
head:
|
32 |
+
[ [ -1, 1, Conv, [ 768, 1, 1 ] ],
|
33 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
34 |
+
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
|
35 |
+
[ -1, 3, C3, [ 768, False ] ], # 15
|
36 |
+
|
37 |
+
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
38 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
39 |
+
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
40 |
+
[ -1, 3, C3, [ 512, False ] ], # 19
|
41 |
+
|
42 |
+
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
43 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
44 |
+
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
45 |
+
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
48 |
+
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
|
49 |
+
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
52 |
+
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
|
53 |
+
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[ -1, 1, Conv, [ 768, 3, 2 ] ],
|
56 |
+
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
|
57 |
+
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
models/hub/yolov5x6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.33 # model depth multiple
|
4 |
+
width_multiple: 1.25 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
17 |
+
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
18 |
+
[ -1, 3, C3, [ 128 ] ],
|
19 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
20 |
+
[ -1, 9, C3, [ 256 ] ],
|
21 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
22 |
+
[ -1, 9, C3, [ 512 ] ],
|
23 |
+
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
|
24 |
+
[ -1, 3, C3, [ 768 ] ],
|
25 |
+
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
|
26 |
+
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
|
27 |
+
[ -1, 3, C3, [ 1024, False ] ], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 head
|
31 |
+
head:
|
32 |
+
[ [ -1, 1, Conv, [ 768, 1, 1 ] ],
|
33 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
34 |
+
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
|
35 |
+
[ -1, 3, C3, [ 768, False ] ], # 15
|
36 |
+
|
37 |
+
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
38 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
39 |
+
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
40 |
+
[ -1, 3, C3, [ 512, False ] ], # 19
|
41 |
+
|
42 |
+
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
43 |
+
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
44 |
+
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
45 |
+
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
48 |
+
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
|
49 |
+
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
52 |
+
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
|
53 |
+
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[ -1, 1, Conv, [ 768, 3, 2 ] ],
|
56 |
+
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
|
57 |
+
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
models/yolo.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import sys
|
4 |
+
from copy import deepcopy
|
5 |
+
|
6 |
+
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
7 |
+
logger = logging.getLogger(__name__)
|
8 |
+
|
9 |
+
from models.common import *
|
10 |
+
from models.experimental import *
|
11 |
+
from utils.autoanchor import check_anchor_order
|
12 |
+
from utils.general import make_divisible, check_file, set_logging
|
13 |
+
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
|
14 |
+
select_device, copy_attr
|
15 |
+
|
16 |
+
try:
|
17 |
+
import thop # for FLOPS computation
|
18 |
+
except ImportError:
|
19 |
+
thop = None
|
20 |
+
|
21 |
+
|
22 |
+
class Detect(nn.Module):
|
23 |
+
stride = None # strides computed during build
|
24 |
+
export = False # onnx export
|
25 |
+
|
26 |
+
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
27 |
+
super(Detect, self).__init__()
|
28 |
+
self.nc = nc # number of classes
|
29 |
+
self.no = nc + 5 # number of outputs per anchor
|
30 |
+
self.nl = len(anchors) # number of detection layers
|
31 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
32 |
+
self.grid = [torch.zeros(1)] * self.nl # init grid
|
33 |
+
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
34 |
+
self.register_buffer('anchors', a) # shape(nl,na,2)
|
35 |
+
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
36 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
# x = x.copy() # for profiling
|
40 |
+
z = [] # inference output
|
41 |
+
self.training |= self.export
|
42 |
+
for i in range(self.nl):
|
43 |
+
x[i] = self.m[i](x[i]) # conv
|
44 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
45 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
46 |
+
|
47 |
+
if not self.training: # inference
|
48 |
+
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
49 |
+
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
50 |
+
|
51 |
+
y = x[i].sigmoid()
|
52 |
+
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
|
53 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
54 |
+
z.append(y.view(bs, -1, self.no))
|
55 |
+
|
56 |
+
return x if self.training else (torch.cat(z, 1), x)
|
57 |
+
|
58 |
+
@staticmethod
|
59 |
+
def _make_grid(nx=20, ny=20):
|
60 |
+
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
61 |
+
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
62 |
+
|
63 |
+
|
64 |
+
class Model(nn.Module):
|
65 |
+
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
|
66 |
+
super(Model, self).__init__()
|
67 |
+
if isinstance(cfg, dict):
|
68 |
+
self.yaml = cfg # model dict
|
69 |
+
else: # is *.yaml
|
70 |
+
import yaml # for torch hub
|
71 |
+
self.yaml_file = Path(cfg).name
|
72 |
+
with open(cfg) as f:
|
73 |
+
self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict
|
74 |
+
|
75 |
+
# Define model
|
76 |
+
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
77 |
+
if nc and nc != self.yaml['nc']:
|
78 |
+
logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
|
79 |
+
self.yaml['nc'] = nc # override yaml value
|
80 |
+
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
81 |
+
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
82 |
+
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
|
83 |
+
|
84 |
+
# Build strides, anchors
|
85 |
+
m = self.model[-1] # Detect()
|
86 |
+
if isinstance(m, Detect):
|
87 |
+
s = 256 # 2x min stride
|
88 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
89 |
+
m.anchors /= m.stride.view(-1, 1, 1)
|
90 |
+
check_anchor_order(m)
|
91 |
+
self.stride = m.stride
|
92 |
+
self._initialize_biases() # only run once
|
93 |
+
# print('Strides: %s' % m.stride.tolist())
|
94 |
+
|
95 |
+
# Init weights, biases
|
96 |
+
initialize_weights(self)
|
97 |
+
self.info()
|
98 |
+
logger.info('')
|
99 |
+
|
100 |
+
def forward(self, x, augment=False, profile=False):
|
101 |
+
if augment:
|
102 |
+
img_size = x.shape[-2:] # height, width
|
103 |
+
s = [1, 0.83, 0.67] # scales
|
104 |
+
f = [None, 3, None] # flips (2-ud, 3-lr)
|
105 |
+
y = [] # outputs
|
106 |
+
for si, fi in zip(s, f):
|
107 |
+
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
108 |
+
yi = self.forward_once(xi)[0] # forward
|
109 |
+
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
110 |
+
yi[..., :4] /= si # de-scale
|
111 |
+
if fi == 2:
|
112 |
+
yi[..., 1] = img_size[0] - 1 - yi[..., 1] # de-flip ud
|
113 |
+
elif fi == 3:
|
114 |
+
yi[..., 0] = img_size[1] - 1 - yi[..., 0] # de-flip lr
|
115 |
+
y.append(yi)
|
116 |
+
return torch.cat(y, 1), None # augmented inference, train
|
117 |
+
else:
|
118 |
+
return self.forward_once(x, profile) # single-scale inference, train
|
119 |
+
|
120 |
+
def forward_once(self, x, profile=False):
|
121 |
+
y, dt = [], [] # outputs
|
122 |
+
for m in self.model:
|
123 |
+
if m.f != -1: # if not from previous layer
|
124 |
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
125 |
+
|
126 |
+
if profile:
|
127 |
+
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
|
128 |
+
t = time_synchronized()
|
129 |
+
for _ in range(10):
|
130 |
+
_ = m(x)
|
131 |
+
dt.append((time_synchronized() - t) * 100)
|
132 |
+
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
|
133 |
+
|
134 |
+
x = m(x) # run
|
135 |
+
y.append(x if m.i in self.save else None) # save output
|
136 |
+
|
137 |
+
if profile:
|
138 |
+
print('%.1fms total' % sum(dt))
|
139 |
+
return x
|
140 |
+
|
141 |
+
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
142 |
+
# https://arxiv.org/abs/1708.02002 section 3.3
|
143 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
144 |
+
m = self.model[-1] # Detect() module
|
145 |
+
for mi, s in zip(m.m, m.stride): # from
|
146 |
+
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
147 |
+
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
148 |
+
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
149 |
+
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
150 |
+
|
151 |
+
def _print_biases(self):
|
152 |
+
m = self.model[-1] # Detect() module
|
153 |
+
for mi in m.m: # from
|
154 |
+
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
155 |
+
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
156 |
+
|
157 |
+
# def _print_weights(self):
|
158 |
+
# for m in self.model.modules():
|
159 |
+
# if type(m) is Bottleneck:
|
160 |
+
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
161 |
+
|
162 |
+
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
163 |
+
print('Fusing layers... ')
|
164 |
+
for m in self.model.modules():
|
165 |
+
if type(m) is Conv and hasattr(m, 'bn'):
|
166 |
+
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
167 |
+
delattr(m, 'bn') # remove batchnorm
|
168 |
+
m.forward = m.fuseforward # update forward
|
169 |
+
self.info()
|
170 |
+
return self
|
171 |
+
|
172 |
+
def nms(self, mode=True): # add or remove NMS module
|
173 |
+
present = type(self.model[-1]) is NMS # last layer is NMS
|
174 |
+
if mode and not present:
|
175 |
+
print('Adding NMS... ')
|
176 |
+
m = NMS() # module
|
177 |
+
m.f = -1 # from
|
178 |
+
m.i = self.model[-1].i + 1 # index
|
179 |
+
self.model.add_module(name='%s' % m.i, module=m) # add
|
180 |
+
self.eval()
|
181 |
+
elif not mode and present:
|
182 |
+
print('Removing NMS... ')
|
183 |
+
self.model = self.model[:-1] # remove
|
184 |
+
return self
|
185 |
+
|
186 |
+
def autoshape(self): # add autoShape module
|
187 |
+
print('Adding autoShape... ')
|
188 |
+
m = autoShape(self) # wrap model
|
189 |
+
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
|
190 |
+
return m
|
191 |
+
|
192 |
+
def info(self, verbose=False, img_size=640): # print model information
|
193 |
+
model_info(self, verbose, img_size)
|
194 |
+
|
195 |
+
|
196 |
+
def parse_model(d, ch): # model_dict, input_channels(3)
|
197 |
+
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
|
198 |
+
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
199 |
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
200 |
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
201 |
+
|
202 |
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
203 |
+
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
204 |
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
205 |
+
for j, a in enumerate(args):
|
206 |
+
try:
|
207 |
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
208 |
+
except:
|
209 |
+
pass
|
210 |
+
|
211 |
+
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
212 |
+
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP,
|
213 |
+
C3]:
|
214 |
+
c1, c2 = ch[f], args[0]
|
215 |
+
if c2 != no: # if not output
|
216 |
+
c2 = make_divisible(c2 * gw, 8)
|
217 |
+
|
218 |
+
args = [c1, c2, *args[1:]]
|
219 |
+
if m in [BottleneckCSP, C3]:
|
220 |
+
args.insert(2, n) # number of repeats
|
221 |
+
n = 1
|
222 |
+
elif m is nn.BatchNorm2d:
|
223 |
+
args = [ch[f]]
|
224 |
+
elif m is Concat:
|
225 |
+
c2 = sum([ch[x] for x in f])
|
226 |
+
elif m is Detect:
|
227 |
+
args.append([ch[x] for x in f])
|
228 |
+
if isinstance(args[1], int): # number of anchors
|
229 |
+
args[1] = [list(range(args[1] * 2))] * len(f)
|
230 |
+
elif m is Contract:
|
231 |
+
c2 = ch[f] * args[0] ** 2
|
232 |
+
elif m is Expand:
|
233 |
+
c2 = ch[f] // args[0] ** 2
|
234 |
+
else:
|
235 |
+
c2 = ch[f]
|
236 |
+
|
237 |
+
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
|
238 |
+
t = str(m)[8:-2].replace('__main__.', '') # module type
|
239 |
+
np = sum([x.numel() for x in m_.parameters()]) # number params
|
240 |
+
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
241 |
+
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
|
242 |
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
243 |
+
layers.append(m_)
|
244 |
+
if i == 0:
|
245 |
+
ch = []
|
246 |
+
ch.append(c2)
|
247 |
+
return nn.Sequential(*layers), sorted(save)
|
248 |
+
|
249 |
+
|
250 |
+
if __name__ == '__main__':
|
251 |
+
parser = argparse.ArgumentParser()
|
252 |
+
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
|
253 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
254 |
+
opt = parser.parse_args()
|
255 |
+
opt.cfg = check_file(opt.cfg) # check file
|
256 |
+
set_logging()
|
257 |
+
device = select_device(opt.device)
|
258 |
+
|
259 |
+
# Create model
|
260 |
+
model = Model(opt.cfg).to(device)
|
261 |
+
model.train()
|
262 |
+
|
263 |
+
# Profile
|
264 |
+
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
|
265 |
+
# y = model(img, profile=True)
|
266 |
+
|
267 |
+
# Tensorboard
|
268 |
+
# from torch.utils.tensorboard import SummaryWriter
|
269 |
+
# tb_writer = SummaryWriter()
|
270 |
+
# print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
|
271 |
+
# tb_writer.add_graph(model.model, img) # add model to tensorboard
|
272 |
+
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
|
models/yolov5l.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 3, C3, [1024, False]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|