Spaces:
Runtime error
Runtime error
Commit
·
ac5fe72
1
Parent(s):
de76b43
Delete ERA2.py
Browse files
ERA2.py
DELETED
|
@@ -1,237 +0,0 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
"""
|
| 3 |
-
Created on Fri Oct 14 10:35:25 2022
|
| 4 |
-
|
| 5 |
-
@author: mritchey
|
| 6 |
-
"""
|
| 7 |
-
# streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\ERA\ERA2.py"
|
| 8 |
-
import datetime
|
| 9 |
-
import glob
|
| 10 |
-
import os
|
| 11 |
-
import branca.colormap as cm
|
| 12 |
-
import folium
|
| 13 |
-
import numpy as np
|
| 14 |
-
import pandas as pd
|
| 15 |
-
import plotly.express as px
|
| 16 |
-
import streamlit as st
|
| 17 |
-
from geopy.extra.rate_limiter import RateLimiter
|
| 18 |
-
from geopy.geocoders import Nominatim
|
| 19 |
-
from matplotlib import colors as colors
|
| 20 |
-
from streamlit_folium import st_folium
|
| 21 |
-
import xarray as xr
|
| 22 |
-
import cdsapi
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def mapvalue2color(value, cmap):
|
| 26 |
-
if np.isnan(value):
|
| 27 |
-
return (1, 0, 0, 0)
|
| 28 |
-
else:
|
| 29 |
-
return colors.to_rgba(cmap(value), 0.7)
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def geocode(address):
|
| 33 |
-
try:
|
| 34 |
-
address2 = address.replace(' ', '+').replace(',', '%2C')
|
| 35 |
-
df = pd.read_json(
|
| 36 |
-
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
|
| 37 |
-
results = df.iloc[:1, 0][0][0]['coordinates']
|
| 38 |
-
lat, lon = results['y'], results['x']
|
| 39 |
-
except:
|
| 40 |
-
geolocator = Nominatim(user_agent="GTA Lookup")
|
| 41 |
-
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
|
| 42 |
-
location = geolocator.geocode(address)
|
| 43 |
-
lat, lon = location.latitude, location.longitude
|
| 44 |
-
return lat, lon
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
def graph_within_date_range(d, number_days_range):
|
| 48 |
-
year, month, day = d[:4], d[4:6], d[6:8]
|
| 49 |
-
date = pd.Timestamp(d)
|
| 50 |
-
start_date, end_date = date - \
|
| 51 |
-
pd.Timedelta(days=number_days_range), date + \
|
| 52 |
-
pd.Timedelta(days=number_days_range+1)
|
| 53 |
-
start_date = start_date.strftime("%Y-%m-%d")
|
| 54 |
-
end_date = end_date.strftime("%Y-%m-%d")
|
| 55 |
-
url = f'https://archive-api.open-meteo.com/v1/archive?latitude={lat}&longitude={lon}&start_date={start_date}&end_date={end_date}&hourly=temperature_2m,precipitation,windspeed_10m,windgusts_10m&models=best_match&temperature_unit=fahrenheit&windspeed_unit=mph&precipitation_unit=inch'
|
| 56 |
-
df = pd.read_json(url).reset_index()
|
| 57 |
-
data = pd.DataFrame({c['index']: c['hourly'] for r, c in df.iterrows()})
|
| 58 |
-
data['time'] = pd.to_datetime(data['time'])
|
| 59 |
-
data['date'] = pd.to_datetime(data['time'].dt.date)
|
| 60 |
-
data = data.query("temperature_2m==temperature_2m")
|
| 61 |
-
|
| 62 |
-
data_agg = data.groupby(['date']).agg({'temperature_2m': ['min', 'mean', 'max'],
|
| 63 |
-
'precipitation': ['sum'],
|
| 64 |
-
'windspeed_10m': ['min', 'mean', 'max'],
|
| 65 |
-
'windgusts_10m': ['min', 'mean', 'max']
|
| 66 |
-
})
|
| 67 |
-
data_agg.columns = data_agg.columns.to_series().str.join('_')
|
| 68 |
-
data_agg = data_agg.query("temperature_2m_min==temperature_2m_min")
|
| 69 |
-
return data.drop(columns=['date']), data_agg
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
@st.cache(allow_output_mutation=True)
|
| 73 |
-
def get_era5_data(year, month, day):
|
| 74 |
-
c = cdsapi.Client(key='82849:2dc2d4ad-9e03-4a42-8914-d7faf8c4a44d',
|
| 75 |
-
url="https://cds.climate.copernicus.eu/api/v2")
|
| 76 |
-
|
| 77 |
-
c.retrieve(
|
| 78 |
-
'reanalysis-era5-single-levels',
|
| 79 |
-
{
|
| 80 |
-
'product_type': 'reanalysis',
|
| 81 |
-
'variable': ['10m_u_component_of_wind', '10m_v_component_of_wind',
|
| 82 |
-
'instantaneous_10m_wind_gust',
|
| 83 |
-
'2m_temperature', 'total_precipitation'],
|
| 84 |
-
'year': year,
|
| 85 |
-
'month': [month],
|
| 86 |
-
'day': [day],
|
| 87 |
-
'time': ['00:00', '06:00', '12:00', '18:00'],
|
| 88 |
-
'area': [49.5, -125, 24.5, -66.5, ],
|
| 89 |
-
'format': 'netcdf',
|
| 90 |
-
},
|
| 91 |
-
'data.nc')
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
@st.cache
|
| 95 |
-
def convert_df(df):
|
| 96 |
-
return df.to_csv(index=0).encode('utf-8')
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
try:
|
| 100 |
-
for i in glob.glob('*.grib2'):
|
| 101 |
-
os.remove(i)
|
| 102 |
-
except:
|
| 103 |
-
pass
|
| 104 |
-
|
| 105 |
-
st.set_page_config(layout="wide")
|
| 106 |
-
col1, col2 = st.columns((2))
|
| 107 |
-
|
| 108 |
-
address = st.sidebar.text_input(
|
| 109 |
-
"Address", "123 Main Street, Columbus, OH 43215")
|
| 110 |
-
date = st.sidebar.date_input(
|
| 111 |
-
"Date", pd.Timestamp(2022, 9, 28))
|
| 112 |
-
d = date.strftime('%Y%m%d')
|
| 113 |
-
date = date.strftime('%Y-%m-%d')
|
| 114 |
-
time = st.sidebar.selectbox('Time (UTC):', ('12 AM', '6 AM', '12 PM', '6 PM',))
|
| 115 |
-
type_var = st.sidebar.selectbox(
|
| 116 |
-
'Type:', ('Gust', 'Wind', 'Temp', 'Precipitation'))
|
| 117 |
-
number_days_range = st.sidebar.selectbox(
|
| 118 |
-
'Within Day Range:', (5, 10, 30, 90, 180))
|
| 119 |
-
hourly_daily = st.sidebar.radio('Aggregate Data', ('Hourly', 'Daily'))
|
| 120 |
-
|
| 121 |
-
# Keys
|
| 122 |
-
var_key = {'Gust': 'i10fg', 'Wind': 'wind10',
|
| 123 |
-
'Temp': 't2m', 'Precipitation': 'tp'}
|
| 124 |
-
|
| 125 |
-
variable = var_key[type_var]
|
| 126 |
-
|
| 127 |
-
unit_key = {'Gust': 'MPH', 'Wind': 'MPH',
|
| 128 |
-
'Temp': 'F', 'Precipitation': 'In.'}
|
| 129 |
-
unit = unit_key[type_var]
|
| 130 |
-
|
| 131 |
-
cols_key = {'Gust': ['windgusts_10m'], 'Wind': ['windspeed_10m'], 'Temp': ['temperature_2m'],
|
| 132 |
-
'Precipitation': ['precipitation']}
|
| 133 |
-
|
| 134 |
-
cols_key_agg = {'Gust': ['windgusts_10m_min', 'windgusts_10m_mean',
|
| 135 |
-
'windgusts_10m_max'],
|
| 136 |
-
'Wind': ['windspeed_10m_min', 'windspeed_10m_mean',
|
| 137 |
-
'windspeed_10m_max'],
|
| 138 |
-
'Temp': ['temperature_2m_min', 'temperature_2m_mean', 'temperature_2m_max'],
|
| 139 |
-
'Precipitation': ['precipitation_sum']}
|
| 140 |
-
|
| 141 |
-
if hourly_daily == 'Hourly':
|
| 142 |
-
cols = cols_key[type_var]
|
| 143 |
-
else:
|
| 144 |
-
cols = cols_key_agg[type_var]
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
if time[-2:] == 'PM' and int(time[:2].strip()) < 12:
|
| 148 |
-
t = datetime.time(int(time[:2].strip())+12, 00).strftime('%H')+'00'
|
| 149 |
-
elif time[-2:] == 'AM' and int(time[:2].strip()) == 12:
|
| 150 |
-
t = '00:00'
|
| 151 |
-
else:
|
| 152 |
-
t = datetime.time(int(time[:2].strip()), 00).strftime('%H')+'00'
|
| 153 |
-
|
| 154 |
-
year, month, day = d[:4], d[4:6], d[6:8]
|
| 155 |
-
|
| 156 |
-
get_era5_data(year, month, day)
|
| 157 |
-
ds = xr.open_dataset('data.nc')
|
| 158 |
-
ds = ds.sel(time=f'{date}T{t}').drop('time')
|
| 159 |
-
|
| 160 |
-
#Convert Units
|
| 161 |
-
ds = ds.assign(t2m=(ds.t2m - 273.15) * 9/5 + 32)
|
| 162 |
-
ds = ds.assign(i10fg=(ds.i10fg*2.237))
|
| 163 |
-
ds = ds.assign(tp=(ds.tp/24.5))
|
| 164 |
-
ds = ds.assign(wind10=((ds.v10**2+ds.u10**2)**.5)*2.237)
|
| 165 |
-
|
| 166 |
-
lat, lon = geocode(address)
|
| 167 |
-
|
| 168 |
-
var_value = ds[variable].sel(
|
| 169 |
-
longitude=lon, latitude=lat, method="nearest").values.item()
|
| 170 |
-
var_value = round(var_value, 1)
|
| 171 |
-
|
| 172 |
-
img = ds[variable].values
|
| 173 |
-
boundary = ds.rio.bounds()
|
| 174 |
-
left, bottom, right, top = boundary
|
| 175 |
-
|
| 176 |
-
img[img < 0.0] = np.nan
|
| 177 |
-
|
| 178 |
-
clat = (bottom + top)/2
|
| 179 |
-
clon = (left + right)/2
|
| 180 |
-
|
| 181 |
-
vmin = np.floor(np.nanmin(img))
|
| 182 |
-
vmax = np.ceil(np.nanmax(img))
|
| 183 |
-
|
| 184 |
-
colormap = cm.LinearColormap(
|
| 185 |
-
colors=['blue', 'lightblue', 'red'], vmin=vmin, vmax=vmax)
|
| 186 |
-
|
| 187 |
-
m = folium.Map(location=[lat, lon], zoom_start=5, height=500)
|
| 188 |
-
|
| 189 |
-
folium.Marker(
|
| 190 |
-
location=[lat, lon],
|
| 191 |
-
popup=f"{var_value} {unit}"
|
| 192 |
-
).add_to(m)
|
| 193 |
-
|
| 194 |
-
folium.raster_layers.ImageOverlay(
|
| 195 |
-
image=img,
|
| 196 |
-
name='Wind Speed Map',
|
| 197 |
-
opacity=.8,
|
| 198 |
-
bounds=[[bottom, left], [top, right]],
|
| 199 |
-
colormap=lambda value: mapvalue2color(value, colormap)
|
| 200 |
-
).add_to(m)
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
folium.LayerControl().add_to(m)
|
| 204 |
-
colormap.caption = 'Wind Speed: MPH'
|
| 205 |
-
m.add_child(colormap)
|
| 206 |
-
|
| 207 |
-
with col1:
|
| 208 |
-
st.title('ERA5 Model')
|
| 209 |
-
# st.write(
|
| 210 |
-
# f"{type_wind.title()} Speed: {wind_mph[0].round(2)} MPH at {time} UTC")
|
| 211 |
-
st_folium(m, height=500)
|
| 212 |
-
df_all, df_all_agg = graph_within_date_range(d, number_days_range)
|
| 213 |
-
|
| 214 |
-
if hourly_daily == 'Hourly':
|
| 215 |
-
fig = px.line(df_all, x="time", y=cols)
|
| 216 |
-
df_downloald = df_all
|
| 217 |
-
else:
|
| 218 |
-
fig = px.line(df_all_agg.reset_index(), x="date", y=cols)
|
| 219 |
-
df_downloald = df_all_agg.reset_index()
|
| 220 |
-
|
| 221 |
-
with col2:
|
| 222 |
-
st.title('Analysis')
|
| 223 |
-
st.plotly_chart(fig)
|
| 224 |
-
|
| 225 |
-
csv = convert_df(df_downloald)
|
| 226 |
-
|
| 227 |
-
st.download_button(
|
| 228 |
-
label="Download data as CSV",
|
| 229 |
-
data=csv,
|
| 230 |
-
file_name=f'{d}.csv',
|
| 231 |
-
mime='text/csv')
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
st.markdown(""" <style>
|
| 235 |
-
#MainMenu {visibility: hidden;}
|
| 236 |
-
footer {visibility: hidden;}
|
| 237 |
-
</style> """, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|