Spaces:
Sleeping
Sleeping
Commit
·
19f993d
1
Parent(s):
384d08e
Upload 2 files
Browse files- app.py +49 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Mon Apr 17 08:43:48 2023
|
4 |
+
|
5 |
+
@author: mritchey
|
6 |
+
"""
|
7 |
+
# import keras
|
8 |
+
import streamlit as st
|
9 |
+
from PIL import Image
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
model_type = st.sidebar.selectbox(
|
14 |
+
'Select Model', ('VGG16', 'VGG19', 'ResNet50V2', 'MobileNetV2'))
|
15 |
+
models = {'VGG16': 'vgg16', 'VGG19': 'vgg16', 'ResNet50V2': 'resnet_v2',
|
16 |
+
'MobileNetV2': 'mobilenet_v2'}
|
17 |
+
model_type2 = models[model_type]
|
18 |
+
|
19 |
+
top_n = st.sidebar.selectbox('Number of Results', (3, 5, 10))
|
20 |
+
|
21 |
+
exec(f'from keras.applications.{model_type2} import {model_type}')
|
22 |
+
exec(
|
23 |
+
f'from keras.applications.{model_type2} import preprocess_input, decode_predictions')
|
24 |
+
model = eval(f'{model_type}(weights="imagenet")')
|
25 |
+
|
26 |
+
img_path = st.file_uploader("Upload Picture")
|
27 |
+
|
28 |
+
|
29 |
+
img = Image.open(img_path)
|
30 |
+
st.image(img)
|
31 |
+
|
32 |
+
img = img.resize((224, 224)) # Resize to match VGG16 input size
|
33 |
+
x = np.array(img)
|
34 |
+
x = np.expand_dims(x, axis=0)
|
35 |
+
x = preprocess_input(x)
|
36 |
+
|
37 |
+
# Make predictions on the image
|
38 |
+
preds = model.predict(x)
|
39 |
+
# Convert the predictions to human-readable labels
|
40 |
+
decoded_preds = decode_predictions(preds, top=top_n)[0]
|
41 |
+
|
42 |
+
df = pd.DataFrame(decoded_preds)
|
43 |
+
df.columns = ['label', 'Object', 'Percent Certainty']
|
44 |
+
df.index = df.index+1
|
45 |
+
df = df[['Object', 'Percent Certainty']]
|
46 |
+
df['Percent Certainty'] = df['Percent Certainty'].apply(
|
47 |
+
lambda x: '{:.2%}'.format(x))
|
48 |
+
|
49 |
+
st.dataframe(df)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
Pillow
|
4 |
+
streamlit
|
5 |
+
keras
|