Spaces:
Runtime error
Runtime error
Commit
·
193cb39
1
Parent(s):
42e4416
Upload 2 files
Browse files- app.py +157 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_folium import st_folium
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import folium
|
6 |
+
from joblib import Parallel, delayed
|
7 |
+
|
8 |
+
|
9 |
+
@st.cache
|
10 |
+
def convert_df(df):
|
11 |
+
return df.to_csv(index=0).encode('utf-8')
|
12 |
+
|
13 |
+
|
14 |
+
def map_results(results):
|
15 |
+
for index, row in results.iterrows():
|
16 |
+
address, sq_ft = results.loc[index,
|
17 |
+
'Address'], results.loc[index, 'Total Area']
|
18 |
+
html = f"""<p style="arial"><p style="font-size:14px">
|
19 |
+
{address}
|
20 |
+
<br> Square Footage: {sq_ft}"""
|
21 |
+
|
22 |
+
iframe = folium.IFrame(html)
|
23 |
+
popup = folium.Popup(iframe,
|
24 |
+
min_width=140,
|
25 |
+
max_width=140)
|
26 |
+
|
27 |
+
folium.Marker(location=[results.loc[index, 'Lat'],
|
28 |
+
results.loc[index, 'Lon']],
|
29 |
+
fill_color='#43d9de',
|
30 |
+
popup=popup,
|
31 |
+
radius=8).add_to(m)
|
32 |
+
return folium
|
33 |
+
|
34 |
+
|
35 |
+
@st.cache
|
36 |
+
def get_housing_data(address_input):
|
37 |
+
address = address_input.replace(
|
38 |
+
' ', '+').replace(',', '').replace('#+', '').upper()
|
39 |
+
try:
|
40 |
+
census = pd.read_json(
|
41 |
+
f"https://geocoding.geo.census.gov/geocoder/geographies/onelineaddress?address={address}&benchmark=2020&vintage=2020&format=json")
|
42 |
+
results = census.iloc[:1, 0][0]
|
43 |
+
matchedAddress_first = results[0]['matchedAddress']
|
44 |
+
matchedAddress_last = results[-1]['matchedAddress']
|
45 |
+
lat, lon = results[0]['coordinates']['y'], results[0]['coordinates']['x']
|
46 |
+
# lat2, lon2 = results[-1]['coordinates']['y'], results[-1]['coordinates']['x']
|
47 |
+
censusb = pd.DataFrame({'Description': ['Address Input', 'Census Matched Address: First',
|
48 |
+
'Census Matched Address: Last', 'Lat', 'Lon'],
|
49 |
+
'Values': [address_input, matchedAddress_first, matchedAddress_last, lat, lon]})
|
50 |
+
|
51 |
+
#Property Records
|
52 |
+
url = f'https://www.countyoffice.org/property-records-search/?q={address}'
|
53 |
+
county_office_list = pd.read_html(url)
|
54 |
+
|
55 |
+
if county_office_list[1].shape[1] == 2:
|
56 |
+
df2 = pd.concat([county_office_list[0], county_office_list[1]])
|
57 |
+
else:
|
58 |
+
df2 = county_office_list[0]
|
59 |
+
df2.columns = ['Description', 'Values']
|
60 |
+
|
61 |
+
final = censusb.append(df2)
|
62 |
+
|
63 |
+
#Transpose
|
64 |
+
final2 = final.T
|
65 |
+
final2.columns = final2.loc['Description']
|
66 |
+
final2 = final2.loc[['Values']].set_index('Address Input')
|
67 |
+
|
68 |
+
except:
|
69 |
+
final2 = address_input
|
70 |
+
return final2
|
71 |
+
|
72 |
+
|
73 |
+
@st.cache(allow_output_mutation=True)
|
74 |
+
def address_quick(df, n_jobs=128):
|
75 |
+
if isinstance(df, pd.DataFrame):
|
76 |
+
df = df.drop_duplicates()
|
77 |
+
df['address_input'] = df.iloc[:, 0]+', '+df.iloc[:, 1] + \
|
78 |
+
', '+df.iloc[:, 2]+' '+df.iloc[:, 3].astype(str).str[:5]
|
79 |
+
df['address'] = df['address_input'].replace(
|
80 |
+
{' ': '+', ',': ''}, regex=True).str.upper()
|
81 |
+
df['address'] = df['address'].replace({'#+': ''}, regex=True)
|
82 |
+
# addresses=df['address'].values
|
83 |
+
addresses_input = df['address_input'].values
|
84 |
+
else:
|
85 |
+
addresses_input = [df]
|
86 |
+
results = Parallel(n_jobs=n_jobs, prefer="threads")(
|
87 |
+
delayed(get_housing_data)(i) for i in addresses_input)
|
88 |
+
results_df = [i for i in results if isinstance(i, pd.DataFrame)]
|
89 |
+
results_errors = [i for i in results if not isinstance(i, pd.DataFrame)]
|
90 |
+
errors = pd.DataFrame({'Error Addresses': results_errors})
|
91 |
+
final_results = pd.concat(results_df)
|
92 |
+
final_results = final_results[final_results.columns[2:]].copy()
|
93 |
+
|
94 |
+
return final_results, errors
|
95 |
+
|
96 |
+
|
97 |
+
st.set_page_config(layout="wide")
|
98 |
+
col1, col2 = st.columns((2))
|
99 |
+
|
100 |
+
address = st.sidebar.text_input(
|
101 |
+
"Address", "1500 MOHICAN DR, FORESTDALE, AL, 35214")
|
102 |
+
uploaded_file = st.sidebar.file_uploader("Choose a file")
|
103 |
+
uploaded_file = 'C:/Users/mritchey/addresses_sample.csv'
|
104 |
+
address_file = st.sidebar.radio('Choose',
|
105 |
+
('Single Address', 'Addresses (Geocode: Will take a bit)'))
|
106 |
+
|
107 |
+
|
108 |
+
if address_file == 'Addresses (Geocode: Will take a bit)':
|
109 |
+
try:
|
110 |
+
df = pd.read_csv(uploaded_file)
|
111 |
+
cols = df.columns.to_list()[:4]
|
112 |
+
with st.spinner("Getting Data: Hang On..."):
|
113 |
+
results, errors = address_quick(df[cols])
|
114 |
+
|
115 |
+
except:
|
116 |
+
st.header('Make Sure File is Loaded First and then hit "Addresses"')
|
117 |
+
|
118 |
+
else:
|
119 |
+
results, errors = address_quick(address)
|
120 |
+
|
121 |
+
m = folium.Map(location=[39.50, -98.35], zoom_start=3)
|
122 |
+
|
123 |
+
with col1:
|
124 |
+
st.title('Addresses')
|
125 |
+
map_results(results)
|
126 |
+
st_folium(m, height=500, width=500)
|
127 |
+
|
128 |
+
with col2:
|
129 |
+
st.title('Results')
|
130 |
+
results.index = np.arange(1, len(results) + 1)
|
131 |
+
st.dataframe(results)
|
132 |
+
csv = convert_df(results)
|
133 |
+
st.download_button(
|
134 |
+
label="Download data as CSV",
|
135 |
+
data=csv,
|
136 |
+
file_name='Results.csv',
|
137 |
+
mime='text/csv')
|
138 |
+
try:
|
139 |
+
if errors.shape[0] > 0:
|
140 |
+
|
141 |
+
st.header('Errors')
|
142 |
+
errors.index = np.arange(1, len(errors) + 1)
|
143 |
+
st.dataframe(errors)
|
144 |
+
# st.table(errors.assign(hack='').set_index('hack'))
|
145 |
+
csv2 = convert_df(errors)
|
146 |
+
st.download_button(
|
147 |
+
label="Download Errors as CSV",
|
148 |
+
data=csv2,
|
149 |
+
file_name='Errors.csv',
|
150 |
+
mime='text/csv')
|
151 |
+
except:
|
152 |
+
pass
|
153 |
+
|
154 |
+
st.markdown(""" <style>
|
155 |
+
#MainMenu {visibility: hidden;}
|
156 |
+
footer {visibility: hidden;}
|
157 |
+
</style> """, unsafe_allow_html=True)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
folium==0.12.1.post1
|
2 |
+
joblib==1.1.0
|
3 |
+
numpy==1.19.5
|
4 |
+
pandas==1.5.2
|
5 |
+
streamlit==1.13.0
|
6 |
+
streamlit_folium==0.6.15
|