mattritchey commited on
Commit
193cb39
·
1 Parent(s): 42e4416

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +157 -0
  2. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_folium import st_folium
3
+ import pandas as pd
4
+ import numpy as np
5
+ import folium
6
+ from joblib import Parallel, delayed
7
+
8
+
9
+ @st.cache
10
+ def convert_df(df):
11
+ return df.to_csv(index=0).encode('utf-8')
12
+
13
+
14
+ def map_results(results):
15
+ for index, row in results.iterrows():
16
+ address, sq_ft = results.loc[index,
17
+ 'Address'], results.loc[index, 'Total Area']
18
+ html = f"""<p style="arial"><p style="font-size:14px">
19
+ {address}
20
+ <br> Square Footage: {sq_ft}"""
21
+
22
+ iframe = folium.IFrame(html)
23
+ popup = folium.Popup(iframe,
24
+ min_width=140,
25
+ max_width=140)
26
+
27
+ folium.Marker(location=[results.loc[index, 'Lat'],
28
+ results.loc[index, 'Lon']],
29
+ fill_color='#43d9de',
30
+ popup=popup,
31
+ radius=8).add_to(m)
32
+ return folium
33
+
34
+
35
+ @st.cache
36
+ def get_housing_data(address_input):
37
+ address = address_input.replace(
38
+ ' ', '+').replace(',', '').replace('#+', '').upper()
39
+ try:
40
+ census = pd.read_json(
41
+ f"https://geocoding.geo.census.gov/geocoder/geographies/onelineaddress?address={address}&benchmark=2020&vintage=2020&format=json")
42
+ results = census.iloc[:1, 0][0]
43
+ matchedAddress_first = results[0]['matchedAddress']
44
+ matchedAddress_last = results[-1]['matchedAddress']
45
+ lat, lon = results[0]['coordinates']['y'], results[0]['coordinates']['x']
46
+ # lat2, lon2 = results[-1]['coordinates']['y'], results[-1]['coordinates']['x']
47
+ censusb = pd.DataFrame({'Description': ['Address Input', 'Census Matched Address: First',
48
+ 'Census Matched Address: Last', 'Lat', 'Lon'],
49
+ 'Values': [address_input, matchedAddress_first, matchedAddress_last, lat, lon]})
50
+
51
+ #Property Records
52
+ url = f'https://www.countyoffice.org/property-records-search/?q={address}'
53
+ county_office_list = pd.read_html(url)
54
+
55
+ if county_office_list[1].shape[1] == 2:
56
+ df2 = pd.concat([county_office_list[0], county_office_list[1]])
57
+ else:
58
+ df2 = county_office_list[0]
59
+ df2.columns = ['Description', 'Values']
60
+
61
+ final = censusb.append(df2)
62
+
63
+ #Transpose
64
+ final2 = final.T
65
+ final2.columns = final2.loc['Description']
66
+ final2 = final2.loc[['Values']].set_index('Address Input')
67
+
68
+ except:
69
+ final2 = address_input
70
+ return final2
71
+
72
+
73
+ @st.cache(allow_output_mutation=True)
74
+ def address_quick(df, n_jobs=128):
75
+ if isinstance(df, pd.DataFrame):
76
+ df = df.drop_duplicates()
77
+ df['address_input'] = df.iloc[:, 0]+', '+df.iloc[:, 1] + \
78
+ ', '+df.iloc[:, 2]+' '+df.iloc[:, 3].astype(str).str[:5]
79
+ df['address'] = df['address_input'].replace(
80
+ {' ': '+', ',': ''}, regex=True).str.upper()
81
+ df['address'] = df['address'].replace({'#+': ''}, regex=True)
82
+ # addresses=df['address'].values
83
+ addresses_input = df['address_input'].values
84
+ else:
85
+ addresses_input = [df]
86
+ results = Parallel(n_jobs=n_jobs, prefer="threads")(
87
+ delayed(get_housing_data)(i) for i in addresses_input)
88
+ results_df = [i for i in results if isinstance(i, pd.DataFrame)]
89
+ results_errors = [i for i in results if not isinstance(i, pd.DataFrame)]
90
+ errors = pd.DataFrame({'Error Addresses': results_errors})
91
+ final_results = pd.concat(results_df)
92
+ final_results = final_results[final_results.columns[2:]].copy()
93
+
94
+ return final_results, errors
95
+
96
+
97
+ st.set_page_config(layout="wide")
98
+ col1, col2 = st.columns((2))
99
+
100
+ address = st.sidebar.text_input(
101
+ "Address", "1500 MOHICAN DR, FORESTDALE, AL, 35214")
102
+ uploaded_file = st.sidebar.file_uploader("Choose a file")
103
+ uploaded_file = 'C:/Users/mritchey/addresses_sample.csv'
104
+ address_file = st.sidebar.radio('Choose',
105
+ ('Single Address', 'Addresses (Geocode: Will take a bit)'))
106
+
107
+
108
+ if address_file == 'Addresses (Geocode: Will take a bit)':
109
+ try:
110
+ df = pd.read_csv(uploaded_file)
111
+ cols = df.columns.to_list()[:4]
112
+ with st.spinner("Getting Data: Hang On..."):
113
+ results, errors = address_quick(df[cols])
114
+
115
+ except:
116
+ st.header('Make Sure File is Loaded First and then hit "Addresses"')
117
+
118
+ else:
119
+ results, errors = address_quick(address)
120
+
121
+ m = folium.Map(location=[39.50, -98.35], zoom_start=3)
122
+
123
+ with col1:
124
+ st.title('Addresses')
125
+ map_results(results)
126
+ st_folium(m, height=500, width=500)
127
+
128
+ with col2:
129
+ st.title('Results')
130
+ results.index = np.arange(1, len(results) + 1)
131
+ st.dataframe(results)
132
+ csv = convert_df(results)
133
+ st.download_button(
134
+ label="Download data as CSV",
135
+ data=csv,
136
+ file_name='Results.csv',
137
+ mime='text/csv')
138
+ try:
139
+ if errors.shape[0] > 0:
140
+
141
+ st.header('Errors')
142
+ errors.index = np.arange(1, len(errors) + 1)
143
+ st.dataframe(errors)
144
+ # st.table(errors.assign(hack='').set_index('hack'))
145
+ csv2 = convert_df(errors)
146
+ st.download_button(
147
+ label="Download Errors as CSV",
148
+ data=csv2,
149
+ file_name='Errors.csv',
150
+ mime='text/csv')
151
+ except:
152
+ pass
153
+
154
+ st.markdown(""" <style>
155
+ #MainMenu {visibility: hidden;}
156
+ footer {visibility: hidden;}
157
+ </style> """, unsafe_allow_html=True)
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ folium==0.12.1.post1
2
+ joblib==1.1.0
3
+ numpy==1.19.5
4
+ pandas==1.5.2
5
+ streamlit==1.13.0
6
+ streamlit_folium==0.6.15