Spaces:
Runtime error
Runtime error
Commit
·
5564795
1
Parent(s):
42f9022
Delete app.py
Browse files
app.py
DELETED
@@ -1,157 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from streamlit_folium import st_folium
|
3 |
-
import pandas as pd
|
4 |
-
import numpy as np
|
5 |
-
import folium
|
6 |
-
from joblib import Parallel, delayed
|
7 |
-
|
8 |
-
|
9 |
-
@st.cache
|
10 |
-
def convert_df(df):
|
11 |
-
return df.to_csv(index=0).encode('utf-8')
|
12 |
-
|
13 |
-
|
14 |
-
def map_results(results):
|
15 |
-
for index, row in results.iterrows():
|
16 |
-
address, sq_ft = results.loc[index,
|
17 |
-
'Address'], results.loc[index, 'Total Area']
|
18 |
-
html = f"""<p style="arial"><p style="font-size:14px">
|
19 |
-
{address}
|
20 |
-
<br> Square Footage: {sq_ft}"""
|
21 |
-
|
22 |
-
iframe = folium.IFrame(html)
|
23 |
-
popup = folium.Popup(iframe,
|
24 |
-
min_width=140,
|
25 |
-
max_width=140)
|
26 |
-
|
27 |
-
folium.Marker(location=[results.loc[index, 'Lat'],
|
28 |
-
results.loc[index, 'Lon']],
|
29 |
-
fill_color='#43d9de',
|
30 |
-
popup=popup,
|
31 |
-
radius=8).add_to(m)
|
32 |
-
return folium
|
33 |
-
|
34 |
-
|
35 |
-
@st.cache
|
36 |
-
def get_housing_data(address_input):
|
37 |
-
address = address_input.replace(
|
38 |
-
' ', '+').replace(',', '').replace('#+', '').upper()
|
39 |
-
try:
|
40 |
-
census = pd.read_json(
|
41 |
-
f"https://geocoding.geo.census.gov/geocoder/geographies/onelineaddress?address={address}&benchmark=2020&vintage=2020&format=json")
|
42 |
-
results = census.iloc[:1, 0][0]
|
43 |
-
matchedAddress_first = results[0]['matchedAddress']
|
44 |
-
matchedAddress_last = results[-1]['matchedAddress']
|
45 |
-
lat, lon = results[0]['coordinates']['y'], results[0]['coordinates']['x']
|
46 |
-
# lat2, lon2 = results[-1]['coordinates']['y'], results[-1]['coordinates']['x']
|
47 |
-
censusb = pd.DataFrame({'Description': ['Address Input', 'Census Matched Address: First',
|
48 |
-
'Census Matched Address: Last', 'Lat', 'Lon'],
|
49 |
-
'Values': [address_input, matchedAddress_first, matchedAddress_last, lat, lon]})
|
50 |
-
|
51 |
-
#Property Records
|
52 |
-
url = f'https://www.countyoffice.org/property-records-search/?q={address}'
|
53 |
-
county_office_list = pd.read_html(url)
|
54 |
-
|
55 |
-
if county_office_list[1].shape[1] == 2:
|
56 |
-
df2 = pd.concat([county_office_list[0], county_office_list[1]])
|
57 |
-
else:
|
58 |
-
df2 = county_office_list[0]
|
59 |
-
df2.columns = ['Description', 'Values']
|
60 |
-
|
61 |
-
final = censusb.append(df2)
|
62 |
-
|
63 |
-
#Transpose
|
64 |
-
final2 = final.T
|
65 |
-
final2.columns = final2.loc['Description']
|
66 |
-
final2 = final2.loc[['Values']].set_index('Address Input')
|
67 |
-
|
68 |
-
except:
|
69 |
-
final2 = address_input
|
70 |
-
return final2
|
71 |
-
|
72 |
-
|
73 |
-
@st.cache(allow_output_mutation=True)
|
74 |
-
def address_quick(df, n_jobs=128):
|
75 |
-
if isinstance(df, pd.DataFrame):
|
76 |
-
df = df.drop_duplicates()
|
77 |
-
df['address_input'] = df.iloc[:, 0]+', '+df.iloc[:, 1] + \
|
78 |
-
', '+df.iloc[:, 2]+' '+df.iloc[:, 3].astype(str).str[:5]
|
79 |
-
df['address'] = df['address_input'].replace(
|
80 |
-
{' ': '+', ',': ''}, regex=True).str.upper()
|
81 |
-
df['address'] = df['address'].replace({'#+': ''}, regex=True)
|
82 |
-
# addresses=df['address'].values
|
83 |
-
addresses_input = df['address_input'].values
|
84 |
-
else:
|
85 |
-
addresses_input = [df]
|
86 |
-
results = Parallel(n_jobs=n_jobs, prefer="threads")(
|
87 |
-
delayed(get_housing_data)(i) for i in addresses_input)
|
88 |
-
results_df = [i for i in results if isinstance(i, pd.DataFrame)]
|
89 |
-
results_errors = [i for i in results if not isinstance(i, pd.DataFrame)]
|
90 |
-
errors = pd.DataFrame({'Error Addresses': results_errors})
|
91 |
-
final_results = pd.concat(results_df)
|
92 |
-
final_results = final_results[final_results.columns[2:]].copy()
|
93 |
-
|
94 |
-
return final_results, errors
|
95 |
-
|
96 |
-
|
97 |
-
st.set_page_config(layout="wide")
|
98 |
-
col1, col2 = st.columns((2))
|
99 |
-
|
100 |
-
address = st.sidebar.text_input(
|
101 |
-
"Address", "1500 MOHICAN DR, FORESTDALE, AL, 35214")
|
102 |
-
uploaded_file = st.sidebar.file_uploader("Choose a file")
|
103 |
-
uploaded_file = 'C:/Users/mritchey/addresses_sample.csv'
|
104 |
-
address_file = st.sidebar.radio('Choose',
|
105 |
-
('Single Address', 'Addresses (Geocode: Will take a bit)'))
|
106 |
-
|
107 |
-
|
108 |
-
if address_file == 'Addresses (Geocode: Will take a bit)':
|
109 |
-
try:
|
110 |
-
df = pd.read_csv(uploaded_file)
|
111 |
-
cols = df.columns.to_list()[:4]
|
112 |
-
with st.spinner("Getting Data: Hang On..."):
|
113 |
-
results, errors = address_quick(df[cols])
|
114 |
-
|
115 |
-
except:
|
116 |
-
st.header('Make Sure File is Loaded First and then hit "Addresses"')
|
117 |
-
|
118 |
-
else:
|
119 |
-
results, errors = address_quick(address)
|
120 |
-
|
121 |
-
m = folium.Map(location=[39.50, -98.35], zoom_start=3)
|
122 |
-
|
123 |
-
with col1:
|
124 |
-
st.title('Addresses')
|
125 |
-
map_results(results)
|
126 |
-
st_folium(m, height=500, width=500)
|
127 |
-
|
128 |
-
with col2:
|
129 |
-
st.title('Results')
|
130 |
-
results.index = np.arange(1, len(results) + 1)
|
131 |
-
st.dataframe(results)
|
132 |
-
csv = convert_df(results)
|
133 |
-
st.download_button(
|
134 |
-
label="Download data as CSV",
|
135 |
-
data=csv,
|
136 |
-
file_name='Results.csv',
|
137 |
-
mime='text/csv')
|
138 |
-
try:
|
139 |
-
if errors.shape[0] > 0:
|
140 |
-
|
141 |
-
st.header('Errors')
|
142 |
-
errors.index = np.arange(1, len(errors) + 1)
|
143 |
-
st.dataframe(errors)
|
144 |
-
# st.table(errors.assign(hack='').set_index('hack'))
|
145 |
-
csv2 = convert_df(errors)
|
146 |
-
st.download_button(
|
147 |
-
label="Download Errors as CSV",
|
148 |
-
data=csv2,
|
149 |
-
file_name='Errors.csv',
|
150 |
-
mime='text/csv')
|
151 |
-
except:
|
152 |
-
pass
|
153 |
-
|
154 |
-
st.markdown(""" <style>
|
155 |
-
#MainMenu {visibility: hidden;}
|
156 |
-
footer {visibility: hidden;}
|
157 |
-
</style> """, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|