mattritchey commited on
Commit
b5726de
·
1 Parent(s): 6c8d8d6

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +56 -95
main.py CHANGED
@@ -1,15 +1,10 @@
1
  from fastapi import FastAPI
2
  import uvicorn
3
 
 
4
  import pandas as pd
5
- import numpy as np
6
- import requests
7
- from urllib.parse import urlparse, quote
8
- import re
9
- from bs4 import BeautifulSoup
10
- import time
11
  from joblib import Parallel, delayed
12
- from nltk import ngrams
13
 
14
  app = FastAPI()
15
 
@@ -21,120 +16,86 @@ def root():
21
  return {"API": "Google Address Scrap"}
22
 
23
 
24
-
25
- def normalize_string(string):
26
- normalized_string = string.lower()
27
- normalized_string = re.sub(r'[^\w\s]', '', normalized_string)
28
 
29
- return normalized_string
30
-
31
-
32
- def jaccard_similarity(string1, string2,n = 2, normalize=True):
33
  try:
34
- if normalize:
35
- string1,string2= normalize_string(string1),normalize_string(string2)
36
-
37
- grams1 = set(ngrams(string1, n))
38
- grams2 = set(ngrams(string2, n))
39
- similarity = len(grams1.intersection(grams2)) / len(grams1.union(grams2))
40
  except:
41
- similarity=0
42
-
43
- if string2=='did not extract address':
44
- similarity=0
45
-
46
- return similarity
47
-
48
- def jaccard_sim_split_word_number(string1,string2):
49
- numbers1 = ' '.join(re.findall(r'\d+', string1))
50
- words1 = ' '.join(re.findall(r'\b[A-Za-z]+\b', string1))
51
 
52
- numbers2 = ' '.join(re.findall(r'\d+', string2))
53
- words2 = ' '.join(re.findall(r'\b[A-Za-z]+\b', string2))
 
 
 
54
 
55
- number_similarity=jaccard_similarity(numbers1,numbers2)
56
- words_similarity=jaccard_similarity(words1,words2)
57
- return (number_similarity+words_similarity)/2
58
-
59
- def extract_website_domain(url):
60
- parsed_url = urlparse(url)
61
- return parsed_url.netloc
62
-
63
-
64
- def google_address(address):
65
 
66
- search_query = quote(address)
67
- url=f'https://www.google.com/search?q={search_query}'
68
- response = requests.get(url)
69
- soup = BeautifulSoup(response.content, "html.parser")
70
-
71
- texts_links = []
72
- for link in soup.find_all("a"):
73
- t,l=link.get_text(), link.get("href")
74
- if (l[:11]=='/url?q=http') and (len(t)>20 ):
75
- texts_links.append((t,l))
76
-
77
- text = soup.get_text()
78
-
79
- texts_links_des=[]
80
- for i,t_l in enumerate(texts_links):
81
- start=text.find(texts_links[i][0][:50])
82
- try:
83
- end=text.find(texts_links[i+1][0][:50])
84
- except:
85
- end=text.find('Related searches')
86
-
87
- description=text[start:end]
88
- texts_links_des.append((t_l[0],t_l[1],description))
89
-
90
- df=pd.DataFrame(texts_links_des,columns=['Title','Link','Description'])
91
- df['Description']=df['Description'].bfill()
92
- df['Address Output']=df['Title'].str.extract(r'(.+? \d{5})').fillna("**DID NOT EXTRACT ADDRESS**")
93
-
94
- df['Link']=[i[7:i.find('&sa=')] for i in df['Link']]
95
- df['Website'] = df['Link'].apply(extract_website_domain)
96
-
97
- df['Square Footage']=df['Description'].str.extract(r"((\d+) Square Feet|(\d+) sq. ft.|(\d+) sqft|(\d+) Sq. Ft.|(\d+) sq|(\d+(?:,\d+)?) Sq\. Ft\.|(\d+(?:,\d+)?) sq)")[0]
98
  try:
99
- df['Square Footage']=df['Square Footage'].replace({',':''},regex=True).str.replace(r'\D', '')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  except:
101
- pass
102
- df['Beds']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"(\d+) bed")
103
-
104
-
105
- df['Baths']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"((\d+) bath|(\d+(?:\.\d+)?) bath)")[0]
106
- df['Baths']=df['Baths'].str.extract(r'([\d.]+)').astype(float)
107
 
108
- df['Year Built']=df['Description'].str.extract(r"built in (\d{4})")
109
 
110
- df['Match Percent']=[jaccard_sim_split_word_number(address,i)*100 for i in df['Address Output']]
111
- df['Google Search Result']=[*range(1,df.shape[0]+1)]
112
-
113
- df.insert(0,'Address Input',address)
114
-
115
- return df
116
 
117
 
118
  def catch_errors(addresses):
119
  try:
120
- return google_address(addresses)
121
  except:
122
  return pd.DataFrame({'Address Input':[addresses]})
123
 
124
 
125
  def process_multiple_address(addresses):
126
- results=Parallel(n_jobs=32, prefer="threads")(delayed(catch_errors)(i) for i in addresses)
127
  return results
128
 
129
 
130
- @app.get('/Google_Address_Scrap')
 
131
  async def predict(address_input: str):
132
 
133
- address_input_split = address_input.split(';')
134
  results = process_multiple_address(address_input_split)
135
  results = pd.concat(results).reset_index(drop=1)
136
- prediction = results[['Address Input', 'Address Output', 'Match Percent', 'Website', 'Square Footage', 'Beds', 'Baths', 'Year Built',
137
- 'Link', 'Google Search Result', 'Description']]
 
 
 
 
 
 
 
 
 
 
138
  return prediction.to_json()
139
 
140
 
 
1
  from fastapi import FastAPI
2
  import uvicorn
3
 
4
+
5
  import pandas as pd
 
 
 
 
 
 
6
  from joblib import Parallel, delayed
7
+ from redfin import Redfin
8
 
9
  app = FastAPI()
10
 
 
16
  return {"API": "Google Address Scrap"}
17
 
18
 
19
+ def red_fin_api(add):
20
+ client = Redfin()
21
+ response = client.search(add)
 
22
 
 
 
 
 
23
  try:
24
+ url = response['payload']['exactMatch']['url']
25
+ initial_info = client.initial_info(url)
 
 
 
 
26
  except:
27
+ initial_info = add
 
 
 
 
 
 
 
 
 
28
 
29
+ try:
30
+ property_id = initial_info['payload']['propertyId']
31
+ mls_data = client.below_the_fold(property_id)
32
+ except:
33
+ mls_data = add
34
 
 
 
 
 
 
 
 
 
 
 
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  try:
37
+
38
+ lat,lon=initial_info['payload']['latLong'].values()
39
+ img=initial_info['payload']['preloadImageUrls'][0]
40
+
41
+ # int_group=r[1]['payload']['amenitiesInfo']['superGroups'][0]['amenityGroups']
42
+
43
+ ext_prop=mls_data['payload']['amenitiesInfo']['superGroups'][1]['amenityGroups'][0]['amenityEntries']
44
+ ext_prop=pd.DataFrame(ext_prop)
45
+ ext_prop['amenityValues']=[i[0] for i in ext_prop['amenityValues'].values]
46
+ ext_prop2=ext_prop[['referenceName','amenityValues']].T
47
+ ext_prop2.columns=ext_prop2.values[0]
48
+ ext_prop3=ext_prop2.tail(1).reset_index(drop=1)
49
+
50
+ df=pd.DataFrame(mls_data['payload']['publicRecordsInfo']['basicInfo'],index=[0]).drop(columns=['apn','propertyLastUpdatedDate','displayTimeZone'])
51
+
52
+ df['Lat']=lat
53
+ df['Lon']=lon
54
+ # df['Image']=img
55
+ df2=df.join(ext_prop3)
56
+ df2.insert(0,'url',f'https://www.redfin.com{url}')
57
+
58
  except:
59
+ df2=pd.DataFrame({'Missing':[1]})
 
 
 
 
 
60
 
61
+ df2.insert(0,'Address Input',add)
62
 
63
+
64
+ return df2
65
+
 
 
 
66
 
67
 
68
  def catch_errors(addresses):
69
  try:
70
+ return red_fin_api(addresses)
71
  except:
72
  return pd.DataFrame({'Address Input':[addresses]})
73
 
74
 
75
  def process_multiple_address(addresses):
76
+ results=Parallel(n_jobs=64, prefer="threads")(delayed(catch_errors)(i) for i in addresses)
77
  return results
78
 
79
 
80
+
81
+ @app.get('/Redfin_Address_Scrap')
82
  async def predict(address_input: str):
83
 
84
+ address_input_split = address_input.split(';')
85
  results = process_multiple_address(address_input_split)
86
  results = pd.concat(results).reset_index(drop=1)
87
+
88
+ cols_order=['Address Input', 'sqFtFinished', 'totalSqFt', 'yearBuilt', 'propertyTypeName', 'beds', 'baths', 'numStories',
89
+ 'url',
90
+ 'Lat', 'Lon']
91
+ cols_other=[i for i in results.columns if i not in cols_order ]
92
+ results=results[cols_order+cols_other].reset_index()
93
+
94
+ results['index']=results['index']+1
95
+ results.index=results.index+1
96
+ results=results.rename(columns={'index':'Input Position'})
97
+ prediction['yearBuilt']=results['yearBuilt'].fillna(0).astype(int).astype(str).replace('0','')
98
+
99
  return prediction.to_json()
100
 
101