File size: 4,843 Bytes
8637b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fd391c
8637b98
 
 
6fd391c
8637b98
862a7a7
8637b98
e70164b
 
8637b98
 
 
 
 
 
 
 
 
6fd391c
8637b98
6fd391c
 
 
8637b98
6fd391c
 
 
8637b98
 
862a7a7
 
8637b98
862a7a7
8637b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3eb7d4e
8637b98
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import streamlit as st
import pandas as pd
from joblib import Parallel, delayed
from redfin import Redfin
import requests
requests.urllib3.disable_warnings()

@st.cache_data
def convert_df(df):
    return df.to_csv()


def red_fin_api(add):
    client = Redfin()
    response = client.search(add)
    
    try:
        url = response['payload']['exactMatch']['url']
        initial_info = client.initial_info(url)
    except:
        initial_info = add
    
    try:
         property_id = initial_info['payload']['propertyId']
         mls_data = client.below_the_fold(property_id)
    except:
        mls_data = add
    

    try:
        
        lat,lon=initial_info['payload']['latLong'].values()
        img=initial_info['payload']['preloadImageUrls'][0]
        
        # int_group=r[1]['payload']['amenitiesInfo']['superGroups'][0]['amenityGroups']
       
        ext_prop=mls_data['payload']['amenitiesInfo']['superGroups'][1]['amenityGroups'][0]['amenityEntries']
        ext_prop=pd.DataFrame(ext_prop)
        ext_prop['amenityValues']=[i[0] for i in ext_prop['amenityValues'].values]
        ext_prop2=ext_prop[['referenceName','amenityValues']].T
        ext_prop2.columns=ext_prop2.values[0]
        ext_prop3=ext_prop2.tail(1).reset_index(drop=1)

        df=pd.DataFrame(mls_data['payload']['publicRecordsInfo']['basicInfo'],index=[0]).drop(columns=['apn','propertyLastUpdatedDate','displayTimeZone'])
    
        df['Lat']=lat
        df['Lon']=lon
        # df['Image']=img
        df2=df.join(ext_prop3)
        df2.insert(0,'url',f'https://www.redfin.com{url}')
        
    except:
        df2=pd.DataFrame({'Missing':[1]})  
    
    df2.insert(0,'Address Input',add)  
    

    return df2


    
def catch_errors(addresses):
    try: 
        return red_fin_api(addresses)
    except:
        return pd.DataFrame({'Address Input':[addresses]})

@st.cache_data
def process_multiple_address(addresses):
    results=Parallel(n_jobs=64, prefer="threads")(delayed(catch_errors)(i) for i in addresses)
    return results
    

st.set_page_config(layout="wide")
st.header("Redfin Data")  

address = st.sidebar.text_input("Single Address:", "190 Pebble Creek Dr Etna, OH 43062")
uploaded_file = st.sidebar.file_uploader("Upload Multiple Addresses:")

if uploaded_file is not None:
    try:
        df = pd.read_csv(uploaded_file)
    except:
        df = pd.read_excel(uploaded_file)
     
    address_cols=list(df.columns[:4])
    df[address_cols[-1]]=df[address_cols[-1]].astype(str).str[:5].astype(int).astype(str)
    df[address_cols[-1]]=df[address_cols[-1]].apply(lambda x: x.zfill(5))
    
    df['Address All']=df[address_cols[0]]+', '+df[address_cols[1]]+', '+df[address_cols[2]]+' '+df[address_cols[3]]
    
    results= process_multiple_address(df['Address All'].values)
    results=pd.concat(results).reset_index(drop=1)
    # results.index=results.index+1

else:    
    results=red_fin_api(address).reset_index(drop=1)
    # results.index=results.index+1

total_input_shape=results.shape[0]


cols_order=['Address Input',  'sqFtFinished', 'totalSqFt', 'yearBuilt', 'propertyTypeName', 'beds', 'baths', 'numStories',
            'url',
            'Lat', 'Lon']
cols_other=[i for i in results.columns if i not in cols_order ]

try:
    missing=results.query("Missing==Missing")[['Address Input']].reset_index()
    missing.index=missing.index+1
    missing['index']=missing['index']+1
    missing.columns=['Input Position','Address Input']
    results=results.query("Missing!=Missing")[cols_order+cols_other].drop(columns=['Missing']).reset_index()
except:
    results=results[cols_order+cols_other].reset_index()
 
    

results['index']=results['index']+1
results.index=results.index+1
results=results.rename(columns={'index':'Input Position'})
results['yearBuilt']=results['yearBuilt'].fillna(0).astype(int).astype(str).replace('0','')

results_shape=results.shape[0]
percent_results=(results_shape/total_input_shape)*100
with st.container():
    st.write(f"Redfin Results: {percent_results}%")
    st.dataframe(
        results,
        column_config={
       
            "url": st.column_config.LinkColumn("url"),
             "Image": st.column_config.LinkColumn("Image"),
           
        },
        hide_index=False,

    )

csv = convert_df(results)
st.download_button(
    label="Download Results as CSV",
    data=csv,
    file_name=f'Redfin Results.csv',
    mime='text/csv')

try:
    csv2 = convert_df(missing)
    st.write(f"Missing Addresses: {100-percent_results}%")
    st.dataframe(missing)
    st.download_button(
        label="Download Missing Data as CSV",
        data=csv2,
        file_name=f'Redfin missing.csv',
        mime='text/csv')
except:
    pass

st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)