Spaces:
Runtime error
Runtime error
File size: 4,843 Bytes
8637b98 6fd391c 8637b98 6fd391c 8637b98 862a7a7 8637b98 e70164b 8637b98 6fd391c 8637b98 6fd391c 8637b98 6fd391c 8637b98 862a7a7 8637b98 862a7a7 8637b98 3eb7d4e 8637b98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import streamlit as st
import pandas as pd
from joblib import Parallel, delayed
from redfin import Redfin
import requests
requests.urllib3.disable_warnings()
@st.cache_data
def convert_df(df):
return df.to_csv()
def red_fin_api(add):
client = Redfin()
response = client.search(add)
try:
url = response['payload']['exactMatch']['url']
initial_info = client.initial_info(url)
except:
initial_info = add
try:
property_id = initial_info['payload']['propertyId']
mls_data = client.below_the_fold(property_id)
except:
mls_data = add
try:
lat,lon=initial_info['payload']['latLong'].values()
img=initial_info['payload']['preloadImageUrls'][0]
# int_group=r[1]['payload']['amenitiesInfo']['superGroups'][0]['amenityGroups']
ext_prop=mls_data['payload']['amenitiesInfo']['superGroups'][1]['amenityGroups'][0]['amenityEntries']
ext_prop=pd.DataFrame(ext_prop)
ext_prop['amenityValues']=[i[0] for i in ext_prop['amenityValues'].values]
ext_prop2=ext_prop[['referenceName','amenityValues']].T
ext_prop2.columns=ext_prop2.values[0]
ext_prop3=ext_prop2.tail(1).reset_index(drop=1)
df=pd.DataFrame(mls_data['payload']['publicRecordsInfo']['basicInfo'],index=[0]).drop(columns=['apn','propertyLastUpdatedDate','displayTimeZone'])
df['Lat']=lat
df['Lon']=lon
# df['Image']=img
df2=df.join(ext_prop3)
df2.insert(0,'url',f'https://www.redfin.com{url}')
except:
df2=pd.DataFrame({'Missing':[1]})
df2.insert(0,'Address Input',add)
return df2
def catch_errors(addresses):
try:
return red_fin_api(addresses)
except:
return pd.DataFrame({'Address Input':[addresses]})
@st.cache_data
def process_multiple_address(addresses):
results=Parallel(n_jobs=64, prefer="threads")(delayed(catch_errors)(i) for i in addresses)
return results
st.set_page_config(layout="wide")
st.header("Redfin Data")
address = st.sidebar.text_input("Single Address:", "190 Pebble Creek Dr Etna, OH 43062")
uploaded_file = st.sidebar.file_uploader("Upload Multiple Addresses:")
if uploaded_file is not None:
try:
df = pd.read_csv(uploaded_file)
except:
df = pd.read_excel(uploaded_file)
address_cols=list(df.columns[:4])
df[address_cols[-1]]=df[address_cols[-1]].astype(str).str[:5].astype(int).astype(str)
df[address_cols[-1]]=df[address_cols[-1]].apply(lambda x: x.zfill(5))
df['Address All']=df[address_cols[0]]+', '+df[address_cols[1]]+', '+df[address_cols[2]]+' '+df[address_cols[3]]
results= process_multiple_address(df['Address All'].values)
results=pd.concat(results).reset_index(drop=1)
# results.index=results.index+1
else:
results=red_fin_api(address).reset_index(drop=1)
# results.index=results.index+1
total_input_shape=results.shape[0]
cols_order=['Address Input', 'sqFtFinished', 'totalSqFt', 'yearBuilt', 'propertyTypeName', 'beds', 'baths', 'numStories',
'url',
'Lat', 'Lon']
cols_other=[i for i in results.columns if i not in cols_order ]
try:
missing=results.query("Missing==Missing")[['Address Input']].reset_index()
missing.index=missing.index+1
missing['index']=missing['index']+1
missing.columns=['Input Position','Address Input']
results=results.query("Missing!=Missing")[cols_order+cols_other].drop(columns=['Missing']).reset_index()
except:
results=results[cols_order+cols_other].reset_index()
results['index']=results['index']+1
results.index=results.index+1
results=results.rename(columns={'index':'Input Position'})
results['yearBuilt']=results['yearBuilt'].fillna(0).astype(int).astype(str).replace('0','')
results_shape=results.shape[0]
percent_results=(results_shape/total_input_shape)*100
with st.container():
st.write(f"Redfin Results: {percent_results}%")
st.dataframe(
results,
column_config={
"url": st.column_config.LinkColumn("url"),
"Image": st.column_config.LinkColumn("Image"),
},
hide_index=False,
)
csv = convert_df(results)
st.download_button(
label="Download Results as CSV",
data=csv,
file_name=f'Redfin Results.csv',
mime='text/csv')
try:
csv2 = convert_df(missing)
st.write(f"Missing Addresses: {100-percent_results}%")
st.dataframe(missing)
st.download_button(
label="Download Missing Data as CSV",
data=csv2,
file_name=f'Redfin missing.csv',
mime='text/csv')
except:
pass
st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True) |