Spaces:
Runtime error
Runtime error
File size: 6,288 Bytes
c79d2fb 2caaacb c79d2fb b249a75 c79d2fb 2caaacb c79d2fb 2caaacb c79d2fb 2caaacb c79d2fb 2caaacb c79d2fb 2caaacb c79d2fb 2caaacb c79d2fb 2caaacb c79d2fb 2caaacb c79d2fb 2caaacb 43f6f15 c79d2fb 2caaacb c79d2fb 2caaacb c79d2fb 2caaacb c79d2fb 99e68e9 c79d2fb 2caaacb c79d2fb 2caaacb c79d2fb 2caaacb c79d2fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 14 10:35:25 2022
@author: mritchey
"""
import gzip
import pickle
import h5py
import rasterio
from PIL import Image
import streamlit as st
import os
import branca.colormap as cm
import folium
from streamlit_folium import st_folium
import numpy as np
import pandas as pd
import plotly.express as px
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
import rioxarray
import xarray as xr
import warnings
warnings.filterwarnings("ignore")
@st.cache_data
def convert_df(df):
return df.to_csv(index=0).encode('utf-8')
def geocode(address):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent="GTA Lookup")
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
return pd.DataFrame({'Lat': lat, 'Lon': lon}, index=[0])
def map_folium(data, zoom=12):
m = folium.Map(location=[lat, lon], zoom_start=zoom, height=300)
folium.Marker(
location=[lat, lon],
popup=address).add_to(m)
# folium.GeoJson(gdf['buffer']).add_to(m)
folium.raster_layers.ImageOverlay(
data, opacity=0.8, bounds=[[bottom, left], [top, right]],
interactive=True
).add_to(m)
return m
# @st.cache_data
def crop_hail_jpg_filter(f, crop_coords, scaling_factor=255):
date = f[-19:-11]
image = Image.open(f)
cropped_image = image.crop(crop_coords)
image = (np.array(cropped_image)/scaling_factor)
if image.sum() > 0:
return date, image
# @st.cache_data
def get_data(row, col, radius):
files = [
"2023_hail.h5",
"2022_hail.h5"]
all_data = []
all_dates = []
for f in files:
with h5py.File(f, 'r') as f:
data = f['hail'][:, row-radius:row +
radius+1, col-radius:col+radius+1]
dates = f['dates'][:]
all_data.append(data)
all_dates.append(dates)
data_mat = np.concatenate(all_data)
data_mat = np.where(data_mat < 0, 0, data_mat)*0.0393701
dates_mat = np.concatenate(all_dates)
data_actual = [i[radius, radius] for i in data_mat]
data_max = np.max(data_mat, axis=(1, 2))
data_max_2 = np.max(data_mat, axis=0)
df = pd.DataFrame({'Date': dates_mat,
'Actual': data_actual,
'Max': data_max})
df['Date'] = pd.to_datetime(df['Date'], format='%Y%m%d')
return df, data_max_2
#Set up 2 Columns
st.set_page_config(layout="wide")
col1, col2 = st.columns((2))
#Input Values
address = st.sidebar.text_input("Address", "123 Main Street, Dallas, TX 75126")
start_date = st.sidebar.date_input("Start Date", pd.Timestamp(2022, 1, 1))
end_date = st.sidebar.date_input("End Date", pd.Timestamp(2023, 12, 31))
circle_radius = st.sidebar.selectbox('Box Radius (Miles)', (5, 10, 25))
zoom_dic = {5: 12, 10: 11, 25: 10}
zoom = zoom_dic[circle_radius]
#Geocode and get Data
result = geocode(address)
lat, lon = result.values[0]
#Raster Data
extracted_file = 'hail_stage.grib2'
ds_stage = xr.open_dataarray(extracted_file,engine='rasterio')
transform = ds_stage.rio.transform()
row, col = rasterio.transform.rowcol(transform, lon, lat)
radius = int(np.ceil(circle_radius*1.6))
crop_coords = col-radius, row-radius, col+radius+1, row+radius+1
# Get Data
df_data, max_values = get_data(row, col, radius)
df_data=df_data.query(f"'{start_date}'<=Date<='{end_date}'")
# Bin Data
bin_edges = [0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2, 3, 4, np.inf]
bin_names = ["<0.1", "0.1-0.2", "0.2-0.4", "0.4-0.8", "0.8-1.2", "1.2-1.6", "1.6-2",
"2-3", "3-4", ">4"]
colors_values = ['#ffffff', '#ffff00', '#d1ab00', '#ff9b00', '#fe0000', '#cd0000', '#ff30ce',
'#ff30cd', '#9a009b', '#4a4d4c']
color_discrete_map = dict(zip(bin_names, colors_values))
fig = px.bar(df_data, x="Date", y="Actual", color="Actual",
# barmode="stack",
# color='red',
# color_discrete_map=color_discrete_map,
)
# Crop the raster using the bounds
cropped_data = ds_stage[0][row-radius:row+radius+1, col-radius:col+radius+1]
cropped_data.values = max_values
# Max Values Bin for RGB
def hex_to_rgb(hex_code):
hex_code = hex_code.lstrip('#') # Remove the '#' character if present
rgb = tuple(int(hex_code[i:i+2], 16) for i in (0, 2, 4))
return rgb
def hex_to_rgba(hex_code, alpha=.8):
if hex_code == '#ffffff':
alpha = 0.0
alpha_scaled = int(alpha * 255)
rgb = hex_to_rgb(hex_code)
rgba = rgb + (alpha_scaled,)
return rgba
bin_indices = np.digitize(max_values, bin_edges)-1
bin_colors = np.take(colors_values, bin_indices)
max_values_rgb = np.array([hex_to_rgba(i) for i in bin_colors.flatten()]).reshape(
max_values.shape[0], max_values.shape[0], 4)
#Mapping
img = max_values_rgb.astype('uint8')
boundary = cropped_data.rio.bounds()
left, bottom, right, top = boundary
# img[img < 0.0] = np.nan
clat = (bottom + top)/2
clon = (left + right)/2
vmin = np.floor(np.nanmin(img))
vmax = np.ceil(np.nanmax(img))
colormap = cm.StepColormap(colors=list(color_discrete_map.values()),
index=bin_edges,
# vmin=vmin, vmax=vmax
)
m = map_folium(img, zoom)
with col1:
st.title('Hail Mesh')
st_folium(m, height=500)
with col2:
st.title(f'Hail')
try:
st.plotly_chart(fig)
csv = convert_df(df_data)
st.download_button(
label="Download data as CSV",
data=csv,
file_name='data.csv',
mime='text/csv')
except:
pass
# st.bokeh_chart(hv.render(nice_plot*points_lat_lon, backend='bokeh'),use_container_width=True)
st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)
|