mattritchey commited on
Commit
8fc4aaf
·
1 Parent(s): 30a3b83

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -11
app.py CHANGED
@@ -79,18 +79,20 @@ def geocode(address):
79
  return lat, lon
80
 
81
 
 
82
  #Side Bar
83
- address = st.sidebar.text_input(
84
- "Address", "Dallas, TX")
85
- date = st.sidebar.date_input(
86
- "Loss Date", pd.Timestamp(2023, 7, 14), key='date')
87
- date_str = date.strftime("%Y%m%d")
88
 
89
  #Geocode Addreses
 
 
90
  lat, lon = geocode(address)
91
 
92
  #Filter Data
93
- df_hail_cut = get_data(lat, lon, date_str)
94
 
95
 
96
  df_hail_cut["Lat_address"] = lat
@@ -98,6 +100,7 @@ df_hail_cut["Lon_address"] = lon
98
  df_hail_cut['Miles to Hail'] = [
99
  distance(i) for i in df_hail_cut[['LAT', 'LON', 'Lat_address', 'Lon_address']].values]
100
  df_hail_cut['MAXSIZE'] = df_hail_cut['MAXSIZE'].round(1)
 
101
  df_hail_cut = df_hail_cut.query("`Miles to Hail`<10")
102
  df_hail_cut['Category'] = np.where(df_hail_cut['Miles to Hail'] < 1, "Within 1 Mile",
103
  np.where(df_hail_cut['Miles to Hail'] < 3, "Within 3 Miles",
@@ -110,15 +113,21 @@ df_hail_cut_group = pd.pivot_table(df_hail_cut, index='Date_utc',
110
  aggfunc='max')
111
 
112
  cols = df_hail_cut_group.columns
113
- cols_focus = [ "Within 1 Mile", "Within 3 Miles",
114
  "Within 5 Miles", "Within 10 Miles"]
115
 
116
  missing_cols = set(cols_focus)-set(cols)
117
  for c in missing_cols:
118
  df_hail_cut_group[c] = np.nan
 
 
 
119
 
120
- df_hail_cut_group2 = df_hail_cut_group[cols_focus].query(
121
- "`Within 3 Miles`==`Within 3 Miles`")
 
 
 
122
 
123
  for i in range(len(cols_focus)-1):
124
  df_hail_cut_group2[cols_focus[i+1]] = np.where(df_hail_cut_group2[cols_focus[i+1]].fillna(0) <
@@ -129,8 +138,8 @@ for i in range(len(cols_focus)-1):
129
 
130
  df_hail_cut_group2 = df_hail_cut_group2.sort_index(ascending=False)
131
 
132
- df_hail_cut_group2.index = pd.to_datetime(
133
- df_hail_cut_group2.index, format='%Y%m%d').strftime("%Y-%m-%d")
134
 
135
 
136
  #Map Data
 
79
  return lat, lon
80
 
81
 
82
+
83
  #Side Bar
84
+ address = st.sidebar.text_input("Address", "Dallas, TX")
85
+ date = st.sidebar.date_input("Loss Date (Max)", pd.Timestamp(2023, 7, 14), key='date')
86
+ show_data = st.sidebar.selectbox('Show Data At Least Within:', ('Show All', '1 Mile', '3 Miles', '5 Miles'))
87
+ show_data='3 Miles'
 
88
 
89
  #Geocode Addreses
90
+ date_str=date.strftime("%Y%m%d")
91
+
92
  lat, lon = geocode(address)
93
 
94
  #Filter Data
95
+ df_hail_cut = get_data(lat,lon, date_str)
96
 
97
 
98
  df_hail_cut["Lat_address"] = lat
 
100
  df_hail_cut['Miles to Hail'] = [
101
  distance(i) for i in df_hail_cut[['LAT', 'LON', 'Lat_address', 'Lon_address']].values]
102
  df_hail_cut['MAXSIZE'] = df_hail_cut['MAXSIZE'].round(1)
103
+
104
  df_hail_cut = df_hail_cut.query("`Miles to Hail`<10")
105
  df_hail_cut['Category'] = np.where(df_hail_cut['Miles to Hail'] < 1, "Within 1 Mile",
106
  np.where(df_hail_cut['Miles to Hail'] < 3, "Within 3 Miles",
 
113
  aggfunc='max')
114
 
115
  cols = df_hail_cut_group.columns
116
+ cols_focus = [ "Within 1 Mile","Within 3 Miles",
117
  "Within 5 Miles", "Within 10 Miles"]
118
 
119
  missing_cols = set(cols_focus)-set(cols)
120
  for c in missing_cols:
121
  df_hail_cut_group[c] = np.nan
122
+
123
+ #Filter
124
+ df_hail_cut_group2 = df_hail_cut_group[cols_focus]
125
 
126
+ if show_data=='Show All':
127
+ pass
128
+ else:
129
+ df_hail_cut_group2 = df_hail_cut_group2.query(
130
+ f"`Within {show_data}`==`Within {show_data}`")
131
 
132
  for i in range(len(cols_focus)-1):
133
  df_hail_cut_group2[cols_focus[i+1]] = np.where(df_hail_cut_group2[cols_focus[i+1]].fillna(0) <
 
138
 
139
  df_hail_cut_group2 = df_hail_cut_group2.sort_index(ascending=False)
140
 
141
+ df_hail_cut_group2.index=pd.to_datetime(df_hail_cut_group2.index,format='%Y%m%d')
142
+ df_hail_cut_group2.index=df_hail_cut_group2.index.strftime("%Y-%m-%d")
143
 
144
 
145
  #Map Data