Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| # -*- coding: utf-8 -*- | |
| """ | |
| Created on Tue Dec 6 09:56:29 2022 | |
| @author: mritchey | |
| """ | |
| #streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\mrms\mrms_hail2 buffer.py" | |
| import plotly.express as px | |
| import os | |
| from PIL import Image | |
| from joblib import Parallel, delayed | |
| import pandas as pd | |
| import streamlit as st | |
| from geopy.extra.rate_limiter import RateLimiter | |
| from geopy.geocoders import Nominatim | |
| import folium | |
| from streamlit_folium import st_folium | |
| import math | |
| import geopandas as gpd | |
| from skimage.io import imread | |
| from streamlit_plotly_events import plotly_events | |
| import requests | |
| from requests.packages.urllib3.exceptions import InsecureRequestWarning | |
| import rasterio | |
| import rioxarray | |
| import numpy as np | |
| def geocode(address, buffer_size): | |
| try: | |
| address2 = address.replace(' ', '+').replace(',', '%2C') | |
| df = pd.read_json( | |
| f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json') | |
| results = df.iloc[:1, 0][0][0]['coordinates'] | |
| lat, lon = results['y'], results['x'] | |
| except: | |
| geolocator = Nominatim(user_agent="GTA Lookup") | |
| geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1) | |
| location = geolocator.geocode(address) | |
| lat, lon = location.latitude, location.longitude | |
| df = pd.DataFrame({'Lat': [lat], 'Lon': [lon]}) | |
| gdf = gpd.GeoDataFrame( | |
| df, geometry=gpd.points_from_xy(df.Lon, df.Lat, crs=4326)) | |
| gdf['buffer'] = gdf['geometry'].to_crs( | |
| 3857).buffer(buffer_size/2*2580).to_crs(4326) | |
| return gdf | |
| def get_pngs(date): | |
| year, month, day = date[:4], date[4:6], date[6:] | |
| url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630' | |
| data = imread(url)[:, :, :3] | |
| data2 = data.reshape(630*920, 3) | |
| data2_df = pd.DataFrame(data2, columns=['R', 'G', 'B']) | |
| data2_df2 = pd.merge(data2_df, lut[['R', 'G', 'B', 'Hail Scale', 'Hail Scale In']], on=['R', 'G', 'B'], | |
| how='left')[['Hail Scale', 'Hail Scale In']] | |
| data2_df2['Date'] = date | |
| return data2_df2.reset_index() | |
| def get_pngs_parallel(dates): | |
| results1 = Parallel(n_jobs=32, prefer="threads")( | |
| delayed(get_pngs)(i) for i in dates) | |
| return results1 | |
| def png_data(date): | |
| year, month, day = date[:4], date[4:6], date[6:] | |
| url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630' | |
| data = imread(url) | |
| return data | |
| def map_folium(data, gdf): | |
| m = folium.Map(location=[lat, lon], zoom_start=zoom, height=300) | |
| folium.Marker( | |
| location=[lat, lon], | |
| popup=address).add_to(m) | |
| folium.GeoJson(gdf['buffer']).add_to(m) | |
| folium.raster_layers.ImageOverlay( | |
| data, opacity=0.8, bounds=bounds).add_to(m) | |
| return m | |
| def to_radians(degrees): | |
| return degrees * math.pi / 180 | |
| def lat_lon_to_bounds(lat, lng, zoom, width, height): | |
| earth_cir_m = 40075016.686 | |
| degreesPerMeter = 360 / earth_cir_m | |
| m_pixel_ew = earth_cir_m / math.pow(2, zoom + 8) | |
| m_pixel_ns = earth_cir_m / \ | |
| math.pow(2, zoom + 8) * math.cos(to_radians(lat)) | |
| shift_m_ew = width/2 * m_pixel_ew | |
| shift_m_ns = height/2 * m_pixel_ns | |
| shift_deg_ew = shift_m_ew * degreesPerMeter | |
| shift_deg_ns = shift_m_ns * degreesPerMeter | |
| return [[lat-shift_deg_ns, lng-shift_deg_ew], [lat+shift_deg_ns, lng+shift_deg_ew]] | |
| def image_to_geotiff(bounds, input_file_path, output_file_path='template.tiff'): | |
| south, west, north, east = tuple( | |
| [item for sublist in bounds for item in sublist]) | |
| dataset = rasterio.open(input_file_path, 'r') | |
| bands = [1, 2, 3] | |
| data = dataset.read(bands) | |
| transform = rasterio.transform.from_bounds(west, south, east, north, | |
| height=data.shape[1], | |
| width=data.shape[2]) | |
| crs = {'init': 'epsg:4326'} | |
| with rasterio.open(output_file_path, 'w', driver='GTiff', | |
| height=data.shape[1], | |
| width=data.shape[2], | |
| count=3, dtype=data.dtype, nodata=0, | |
| transform=transform, crs=crs, | |
| compress='lzw') as dst: | |
| dst.write(data, indexes=bands) | |
| def get_mask(bounds, buffer_size): | |
| year, month, day = date[:4], date[4:6], date[6:] | |
| url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630' | |
| img_data = requests.get(url, verify=False).content | |
| input_file_path = f'image_name_{date}_{var}.png' | |
| output_file_path = 'template.tiff' | |
| with open(input_file_path, 'wb') as handler: | |
| handler.write(img_data) | |
| image_to_geotiff(bounds, input_file_path, output_file_path) | |
| rds = rioxarray.open_rasterio(output_file_path) | |
| # rds.plot.imshow() | |
| rds = rds.assign_coords(distance=(haversine(rds.x, rds.y, lon, lat))) | |
| mask = rds['distance'].values <= buffer_size | |
| mask = np.transpose(np.stack([mask, mask, mask]), (1, 2, 0)) | |
| return mask | |
| def haversine(lon1, lat1, lon2, lat2): | |
| # convert decimal degrees to radians | |
| lon1 = np.deg2rad(lon1) | |
| lon2 = np.deg2rad(lon2) | |
| lat1 = np.deg2rad(lat1) | |
| lat2 = np.deg2rad(lat2) | |
| # haversine formula | |
| dlon = lon2 - lon1 | |
| dlat = lat2 - lat1 | |
| a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2 | |
| c = 2 * np.arcsin(np.sqrt(a)) | |
| r = 6371 | |
| return c * r | |
| #Set Columns | |
| st.set_page_config(layout="wide") | |
| col1, col2, col3 = st.columns((3)) | |
| col1, col2, col3 = st.columns((3, 3, 1)) | |
| #Input Data | |
| zoom = 10 | |
| _ = st.sidebar.text_input( | |
| "Claim Number", "836-xxxxxxx") | |
| address = st.sidebar.text_input( | |
| "Address", "123 Main Street, Cincinnati, OH 43215") | |
| date = st.sidebar.date_input("Date", pd.Timestamp( | |
| 2022, 7, 6), key='date').strftime('%Y%m%d') | |
| d = pd.Timestamp(date) | |
| days_within = st.sidebar.selectbox('Within Days:', (5, 30, 60, 90, 180)) | |
| var = 'Hail' | |
| var_input = 'hails&product=MESHMAX1440M' | |
| mask_select = st.sidebar.radio('Only Show Buffer Data:', ("No", "Yes")) | |
| buffer_size = st.sidebar.radio('Buffer Size (miles):', (5, 10, 15)) | |
| year, month, day = date[:4], date[4:6], date[6:] | |
| hour = 23 | |
| minute = 30 | |
| prod_root = var_input[var_input.find('=')+1:] | |
| #Geocode | |
| gdf = geocode(address, buffer_size) | |
| lat, lon = tuple(gdf[['Lat', 'Lon']].values[0]) | |
| #Get Value | |
| url = 'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/get_multi_domain_rect_binary_value.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/'\ | |
| + f'&prod_root={prod_root}&lon={lon}&lat={lat}&year={year}&month={month}&day={day}&hour={hour}&minute={minute}' | |
| response = requests.get(url, verify=False).json() | |
| qvs_values = pd.DataFrame(response, index=[0])[ | |
| ['qvs_value', 'qvs_units']].values[0] | |
| qvs_value = qvs_values[0] | |
| qvs_unit = qvs_values[1] | |
| #Get PNG Focus | |
| data = png_data(date) | |
| #Legend | |
| legend = Image.open('hail scale3b.png') | |
| #Get PNG Max | |
| start_date, end_date = d - \ | |
| pd.Timedelta(days=days_within), d+pd.Timedelta(days=days_within) | |
| dates = pd.date_range(start_date, | |
| end_date).strftime('%Y%m%d') | |
| lut = pd.read_csv('hail scale.csv') | |
| bounds = lat_lon_to_bounds(lat, lon, zoom, 920, 630) | |
| results1 = get_pngs_parallel(dates) | |
| # results1 = Parallel(n_jobs=32, prefer="threads")(delayed(get_pngs)(i) for i in dates) | |
| results = pd.concat(results1) | |
| max_data = results.groupby('index')[['Hail Scale']].max() | |
| max_data2 = pd.merge(max_data, | |
| lut[['R', 'G', 'B', 'Hail Scale']], | |
| on=['Hail Scale'], | |
| how='left')[['R', 'G', 'B']] | |
| data_max = max_data2.values.reshape(630, 920, 3) | |
| #Masked Data | |
| if mask_select == "Yes": | |
| mask = get_mask(bounds, buffer_size) | |
| mask1 = mask[:, :, 0].reshape(630*920) | |
| results = pd.concat([i[mask1] for i in results1]) | |
| data_max = data_max*mask | |
| else: | |
| pass | |
| #Bar | |
| bar = results.query("`Hail Scale`>4").groupby( | |
| ['Date', 'Hail Scale In'])['index'].count().reset_index() | |
| bar['Date'] = pd.to_datetime(bar['Date']) | |
| bar = bar.reset_index() | |
| bar.columns = ['level_0', 'Date', 'Hail Scale In', 'count'] | |
| bar['Hail Scale In'] = bar['Hail Scale In'].astype(str) | |
| bar = bar.sort_values('Hail Scale In', ascending=True) | |
| color_discrete_map = lut[['Hail Scale In', 'c_code']].sort_values( | |
| 'Hail Scale In', ascending=True).astype(str) | |
| color_discrete_map = color_discrete_map.set_index( | |
| 'Hail Scale In').to_dict()['c_code'] | |
| fig = px.bar(bar, x="Date", y="count", color="Hail Scale In", | |
| barmode='stack', | |
| color_discrete_map=color_discrete_map) | |
| #Submit Url to New Tab | |
| url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/index.php?web_exec_mode=run&menu=menu_config.txt&year={year}&month={month}&day={day}&hour=23&minute=30&time_mode=static&zoom=9&clon={lon}&clat={lat}&base=0&overlays=1&mping_mode=0&product_type={var_input}&qpe_pal_option=0&opacity=.75&looping_active=off&num_frames=6&frame_step=200&seconds_step=600' | |
| #Map Focus | |
| m = map_folium(data, gdf) | |
| #Map Max | |
| m_max = map_folium(data_max, gdf) | |
| with st.container(): | |
| col1, col2, col3 = st.columns((1, 2, 2)) | |
| with col1: | |
| link = f'[Go To MRMS Site]({url})' | |
| st.markdown(link, unsafe_allow_html=True) | |
| st.image(legend) | |
| with col2: | |
| st.header(f'{var} on {pd.Timestamp(date).strftime("%D")}') | |
| st_folium(m, height=300) | |
| with col3: | |
| st.header( | |
| f'Max from {start_date.strftime("%D")} to {end_date.strftime("%D")}') | |
| st_folium(m_max, height=300) | |
| try: | |
| selected_points = plotly_events(fig, click_event=True, hover_event=False) | |
| date2 = pd.Timestamp(selected_points[0]['x']).strftime('%Y%m%d') | |
| data2 = png_data(date2) | |
| m3 = map_folium(data2, gdf) | |
| st.header(f'{var} on {pd.Timestamp(date2).strftime("%D")}') | |
| st_folium(m3, height=300) | |
| except: | |
| pass | |
| st.markdown(""" <style> | |
| #MainMenu {visibility: hidden;} | |
| footer {visibility: hidden;} | |
| </style> """, unsafe_allow_html=True) | |