Spaces:
Runtime error
Runtime error
Commit
·
71a7e73
1
Parent(s):
d59170a
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
Created on Tue Dec 6 09:56:29 2022
|
| 4 |
+
|
| 5 |
+
@author: mritchey
|
| 6 |
+
"""
|
| 7 |
+
#streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\mrms\mrms_hail2 buffer.py"
|
| 8 |
+
|
| 9 |
+
import plotly.express as px
|
| 10 |
+
import os
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from joblib import Parallel, delayed
|
| 13 |
+
import pandas as pd
|
| 14 |
+
import streamlit as st
|
| 15 |
+
from geopy.extra.rate_limiter import RateLimiter
|
| 16 |
+
from geopy.geocoders import Nominatim
|
| 17 |
+
import folium
|
| 18 |
+
from streamlit_folium import st_folium
|
| 19 |
+
import math
|
| 20 |
+
import geopandas as gpd
|
| 21 |
+
from skimage.io import imread
|
| 22 |
+
from streamlit_plotly_events import plotly_events
|
| 23 |
+
import requests
|
| 24 |
+
from requests.packages.urllib3.exceptions import InsecureRequestWarning
|
| 25 |
+
import rasterio
|
| 26 |
+
import rioxarray
|
| 27 |
+
import numpy as np
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@st.cache
|
| 31 |
+
def geocode(address, buffer_size):
|
| 32 |
+
try:
|
| 33 |
+
address2 = address.replace(' ', '+').replace(',', '%2C')
|
| 34 |
+
df = pd.read_json(
|
| 35 |
+
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
|
| 36 |
+
results = df.iloc[:1, 0][0][0]['coordinates']
|
| 37 |
+
lat, lon = results['y'], results['x']
|
| 38 |
+
except:
|
| 39 |
+
geolocator = Nominatim(user_agent="GTA Lookup")
|
| 40 |
+
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
|
| 41 |
+
location = geolocator.geocode(address)
|
| 42 |
+
lat, lon = location.latitude, location.longitude
|
| 43 |
+
|
| 44 |
+
df = pd.DataFrame({'Lat': [lat], 'Lon': [lon]})
|
| 45 |
+
gdf = gpd.GeoDataFrame(
|
| 46 |
+
df, geometry=gpd.points_from_xy(df.Lon, df.Lat, crs=4326))
|
| 47 |
+
gdf['buffer'] = gdf['geometry'].to_crs(
|
| 48 |
+
3857).buffer(buffer_size/2*2580).to_crs(4326)
|
| 49 |
+
return gdf
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
@st.cache
|
| 53 |
+
def get_pngs(date):
|
| 54 |
+
year, month, day = date[:4], date[4:6], date[6:]
|
| 55 |
+
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630'
|
| 56 |
+
data = imread(url)[:, :, :3]
|
| 57 |
+
data2 = data.reshape(630*920, 3)
|
| 58 |
+
data2_df = pd.DataFrame(data2, columns=['R', 'G', 'B'])
|
| 59 |
+
data2_df2 = pd.merge(data2_df, lut[['R', 'G', 'B', 'Hail Scale', 'Hail Scale In']], on=['R', 'G', 'B'],
|
| 60 |
+
how='left')[['Hail Scale', 'Hail Scale In']]
|
| 61 |
+
data2_df2['Date'] = date
|
| 62 |
+
return data2_df2.reset_index()
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
@st.cache
|
| 66 |
+
def get_pngs_parallel(dates):
|
| 67 |
+
results1 = Parallel(n_jobs=32, prefer="threads")(
|
| 68 |
+
delayed(get_pngs)(i) for i in dates)
|
| 69 |
+
return results1
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
@st.cache
|
| 73 |
+
def png_data(date):
|
| 74 |
+
year, month, day = date[:4], date[4:6], date[6:]
|
| 75 |
+
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630'
|
| 76 |
+
data = imread(url)
|
| 77 |
+
return data
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
@st.cache(allow_output_mutation=True)
|
| 81 |
+
def map_folium(data, gdf):
|
| 82 |
+
m = folium.Map(location=[lat, lon], zoom_start=zoom, height=300)
|
| 83 |
+
folium.Marker(
|
| 84 |
+
location=[lat, lon],
|
| 85 |
+
popup=address).add_to(m)
|
| 86 |
+
|
| 87 |
+
folium.GeoJson(gdf['buffer']).add_to(m)
|
| 88 |
+
folium.raster_layers.ImageOverlay(
|
| 89 |
+
data, opacity=0.8, bounds=bounds).add_to(m)
|
| 90 |
+
return m
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def to_radians(degrees):
|
| 94 |
+
return degrees * math.pi / 180
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def lat_lon_to_bounds(lat, lng, zoom, width, height):
|
| 98 |
+
earth_cir_m = 40075016.686
|
| 99 |
+
degreesPerMeter = 360 / earth_cir_m
|
| 100 |
+
m_pixel_ew = earth_cir_m / math.pow(2, zoom + 8)
|
| 101 |
+
m_pixel_ns = earth_cir_m / \
|
| 102 |
+
math.pow(2, zoom + 8) * math.cos(to_radians(lat))
|
| 103 |
+
|
| 104 |
+
shift_m_ew = width/2 * m_pixel_ew
|
| 105 |
+
shift_m_ns = height/2 * m_pixel_ns
|
| 106 |
+
|
| 107 |
+
shift_deg_ew = shift_m_ew * degreesPerMeter
|
| 108 |
+
shift_deg_ns = shift_m_ns * degreesPerMeter
|
| 109 |
+
|
| 110 |
+
return [[lat-shift_deg_ns, lng-shift_deg_ew], [lat+shift_deg_ns, lng+shift_deg_ew]]
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def image_to_geotiff(bounds, input_file_path, output_file_path='template.tiff'):
|
| 114 |
+
south, west, north, east = tuple(
|
| 115 |
+
[item for sublist in bounds for item in sublist])
|
| 116 |
+
dataset = rasterio.open(input_file_path, 'r')
|
| 117 |
+
bands = [1, 2, 3]
|
| 118 |
+
data = dataset.read(bands)
|
| 119 |
+
transform = rasterio.transform.from_bounds(west, south, east, north,
|
| 120 |
+
height=data.shape[1],
|
| 121 |
+
width=data.shape[2])
|
| 122 |
+
crs = {'init': 'epsg:4326'}
|
| 123 |
+
|
| 124 |
+
with rasterio.open(output_file_path, 'w', driver='GTiff',
|
| 125 |
+
height=data.shape[1],
|
| 126 |
+
width=data.shape[2],
|
| 127 |
+
count=3, dtype=data.dtype, nodata=0,
|
| 128 |
+
transform=transform, crs=crs,
|
| 129 |
+
compress='lzw') as dst:
|
| 130 |
+
dst.write(data, indexes=bands)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def get_mask(bounds, buffer_size):
|
| 134 |
+
year, month, day = date[:4], date[4:6], date[6:]
|
| 135 |
+
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630'
|
| 136 |
+
img_data = requests.get(url, verify=False).content
|
| 137 |
+
input_file_path = f'image_name_{date}_{var}.png'
|
| 138 |
+
output_file_path = 'template.tiff'
|
| 139 |
+
with open(input_file_path, 'wb') as handler:
|
| 140 |
+
handler.write(img_data)
|
| 141 |
+
|
| 142 |
+
image_to_geotiff(bounds, input_file_path, output_file_path)
|
| 143 |
+
rds = rioxarray.open_rasterio(output_file_path)
|
| 144 |
+
# rds.plot.imshow()
|
| 145 |
+
|
| 146 |
+
rds = rds.assign_coords(distance=(haversine(rds.x, rds.y, lon, lat)))
|
| 147 |
+
mask = rds['distance'].values <= buffer_size
|
| 148 |
+
mask = np.transpose(np.stack([mask, mask, mask]), (1, 2, 0))
|
| 149 |
+
return mask
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def haversine(lon1, lat1, lon2, lat2):
|
| 153 |
+
# convert decimal degrees to radians
|
| 154 |
+
lon1 = np.deg2rad(lon1)
|
| 155 |
+
lon2 = np.deg2rad(lon2)
|
| 156 |
+
lat1 = np.deg2rad(lat1)
|
| 157 |
+
lat2 = np.deg2rad(lat2)
|
| 158 |
+
|
| 159 |
+
# haversine formula
|
| 160 |
+
dlon = lon2 - lon1
|
| 161 |
+
dlat = lat2 - lat1
|
| 162 |
+
a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
|
| 163 |
+
c = 2 * np.arcsin(np.sqrt(a))
|
| 164 |
+
r = 6371
|
| 165 |
+
return c * r
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
#Set Columns
|
| 169 |
+
st.set_page_config(layout="wide")
|
| 170 |
+
col1, col2, col3 = st.columns((3))
|
| 171 |
+
col1, col2, col3 = st.columns((3, 3, 1))
|
| 172 |
+
|
| 173 |
+
#Input Data
|
| 174 |
+
zoom = 10
|
| 175 |
+
_ = st.sidebar.text_input(
|
| 176 |
+
"Claim Number", "836-xxxxxxx")
|
| 177 |
+
address = st.sidebar.text_input(
|
| 178 |
+
"Address", "123 Main Street, Cincinnati, OH 43215")
|
| 179 |
+
|
| 180 |
+
date = st.sidebar.date_input("Date", pd.Timestamp(
|
| 181 |
+
2022, 7, 6), key='date').strftime('%Y%m%d')
|
| 182 |
+
d = pd.Timestamp(date)
|
| 183 |
+
days_within = st.sidebar.selectbox('Within Days:', (5, 30, 60, 90, 180))
|
| 184 |
+
var = 'Hail'
|
| 185 |
+
var_input = 'hails&product=MESHMAX1440M'
|
| 186 |
+
mask_select = st.sidebar.radio('Only Show Buffer Data:', ("No", "Yes"))
|
| 187 |
+
buffer_size = st.sidebar.radio('Buffer Size (miles):', (5, 10, 15))
|
| 188 |
+
|
| 189 |
+
year, month, day = date[:4], date[4:6], date[6:]
|
| 190 |
+
hour = 23
|
| 191 |
+
minute = 30
|
| 192 |
+
|
| 193 |
+
prod_root = var_input[var_input.find('=')+1:]
|
| 194 |
+
|
| 195 |
+
#Geocode
|
| 196 |
+
gdf = geocode(address, buffer_size)
|
| 197 |
+
lat, lon = tuple(gdf[['Lat', 'Lon']].values[0])
|
| 198 |
+
|
| 199 |
+
#Get Value
|
| 200 |
+
url = 'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/get_multi_domain_rect_binary_value.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/'\
|
| 201 |
+
+ f'&prod_root={prod_root}&lon={lon}&lat={lat}&year={year}&month={month}&day={day}&hour={hour}&minute={minute}'
|
| 202 |
+
|
| 203 |
+
response = requests.get(url, verify=False).json()
|
| 204 |
+
qvs_values = pd.DataFrame(response, index=[0])[
|
| 205 |
+
['qvs_value', 'qvs_units']].values[0]
|
| 206 |
+
qvs_value = qvs_values[0]
|
| 207 |
+
qvs_unit = qvs_values[1]
|
| 208 |
+
|
| 209 |
+
#Get PNG Focus
|
| 210 |
+
data = png_data(date)
|
| 211 |
+
|
| 212 |
+
#Legend
|
| 213 |
+
legend = Image.open('hail scale3b.png')
|
| 214 |
+
|
| 215 |
+
#Get PNG Max
|
| 216 |
+
start_date, end_date = d - \
|
| 217 |
+
pd.Timedelta(days=days_within), d+pd.Timedelta(days=days_within)
|
| 218 |
+
dates = pd.date_range(start_date,
|
| 219 |
+
end_date).strftime('%Y%m%d')
|
| 220 |
+
lut = pd.read_csv('hail scale.csv')
|
| 221 |
+
bounds = lat_lon_to_bounds(lat, lon, zoom, 920, 630)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
results1 = get_pngs_parallel(dates)
|
| 225 |
+
# results1 = Parallel(n_jobs=32, prefer="threads")(delayed(get_pngs)(i) for i in dates)
|
| 226 |
+
results = pd.concat(results1)
|
| 227 |
+
max_data = results.groupby('index')[['Hail Scale']].max()
|
| 228 |
+
|
| 229 |
+
max_data2 = pd.merge(max_data,
|
| 230 |
+
lut[['R', 'G', 'B', 'Hail Scale']],
|
| 231 |
+
on=['Hail Scale'],
|
| 232 |
+
how='left')[['R', 'G', 'B']]
|
| 233 |
+
|
| 234 |
+
data_max = max_data2.values.reshape(630, 920, 3)
|
| 235 |
+
|
| 236 |
+
#Masked Data
|
| 237 |
+
if mask_select == "Yes":
|
| 238 |
+
mask = get_mask(bounds, buffer_size)
|
| 239 |
+
mask1 = mask[:, :, 0].reshape(630*920)
|
| 240 |
+
results = pd.concat([i[mask1] for i in results1])
|
| 241 |
+
data_max = data_max*mask
|
| 242 |
+
else:
|
| 243 |
+
pass
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
#Bar
|
| 247 |
+
bar = results.query("`Hail Scale`>4").groupby(
|
| 248 |
+
['Date', 'Hail Scale In'])['index'].count().reset_index()
|
| 249 |
+
bar['Date'] = pd.to_datetime(bar['Date'])
|
| 250 |
+
|
| 251 |
+
bar = bar.reset_index()
|
| 252 |
+
bar.columns = ['level_0', 'Date', 'Hail Scale In', 'count']
|
| 253 |
+
bar['Hail Scale In'] = bar['Hail Scale In'].astype(str)
|
| 254 |
+
bar = bar.sort_values('Hail Scale In', ascending=True)
|
| 255 |
+
|
| 256 |
+
color_discrete_map = lut[['Hail Scale In', 'c_code']].sort_values(
|
| 257 |
+
'Hail Scale In', ascending=True).astype(str)
|
| 258 |
+
color_discrete_map = color_discrete_map.set_index(
|
| 259 |
+
'Hail Scale In').to_dict()['c_code']
|
| 260 |
+
|
| 261 |
+
fig = px.bar(bar, x="Date", y="count", color="Hail Scale In",
|
| 262 |
+
barmode='stack',
|
| 263 |
+
color_discrete_map=color_discrete_map)
|
| 264 |
+
|
| 265 |
+
#Submit Url to New Tab
|
| 266 |
+
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/index.php?web_exec_mode=run&menu=menu_config.txt&year={year}&month={month}&day={day}&hour=23&minute=30&time_mode=static&zoom=9&clon={lon}&clat={lat}&base=0&overlays=1&mping_mode=0&product_type={var_input}&qpe_pal_option=0&opacity=.75&looping_active=off&num_frames=6&frame_step=200&seconds_step=600'
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
#Map Focus
|
| 270 |
+
m = map_folium(data, gdf)
|
| 271 |
+
#Map Max
|
| 272 |
+
m_max = map_folium(data_max, gdf)
|
| 273 |
+
|
| 274 |
+
with st.container():
|
| 275 |
+
col1, col2, col3 = st.columns((1, 2, 2))
|
| 276 |
+
with col1:
|
| 277 |
+
link = f'[Go To MRMS Site]({url})'
|
| 278 |
+
st.markdown(link, unsafe_allow_html=True)
|
| 279 |
+
st.image(legend)
|
| 280 |
+
with col2:
|
| 281 |
+
st.header(f'{var} on {pd.Timestamp(date).strftime("%D")}')
|
| 282 |
+
st_folium(m, height=300)
|
| 283 |
+
with col3:
|
| 284 |
+
st.header(
|
| 285 |
+
f'Max from {start_date.strftime("%D")} to {end_date.strftime("%D")}')
|
| 286 |
+
st_folium(m_max, height=300)
|
| 287 |
+
|
| 288 |
+
try:
|
| 289 |
+
selected_points = plotly_events(fig, click_event=True, hover_event=False)
|
| 290 |
+
date2 = pd.Timestamp(selected_points[0]['x']).strftime('%Y%m%d')
|
| 291 |
+
data2 = png_data(date2)
|
| 292 |
+
m3 = map_folium(data2, gdf)
|
| 293 |
+
st.header(f'{var} on {pd.Timestamp(date2).strftime("%D")}')
|
| 294 |
+
st_folium(m3, height=300)
|
| 295 |
+
except:
|
| 296 |
+
pass
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
st.markdown(""" <style>
|
| 300 |
+
#MainMenu {visibility: hidden;}
|
| 301 |
+
footer {visibility: hidden;}
|
| 302 |
+
</style> """, unsafe_allow_html=True)
|