Spaces:
Runtime error
Runtime error
Commit
·
ace7fa1
0
Parent(s):
Duplicate from mattritchey/multipage
Browse files- .gitattributes +34 -0
- README.md +13 -0
- app.py +35 -0
- hail scale.csv +16 -0
- hail scale3b.png +0 -0
- pages/Hail Plus.py +375 -0
- pages/Hail.py +306 -0
- pages/Wind (High Resolution): RTMA.py +221 -0
- pages/Wind (Low Resolution): ERA.py +240 -0
- pages/hail scale.csv +16 -0
- pages/hail scale3b.png +0 -0
- pages/readme.rd +0 -0
- requirements.txt +20 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Multipage
|
3 |
+
emoji: 😻
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.17.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: mattritchey/multipage
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Thu Mar 30 08:44:14 2023
|
4 |
+
|
5 |
+
@author: mritchey
|
6 |
+
"""
|
7 |
+
# streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\multipage_app\Homepage.py"
|
8 |
+
import streamlit as st
|
9 |
+
|
10 |
+
st.set_page_config(
|
11 |
+
page_title="Multipage App",
|
12 |
+
# page_icon="👋",
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
st.title("Select A Page in Upper Left")
|
18 |
+
st.header("Hail")
|
19 |
+
# url_hail='https://mattritchey-multipage.hf.space/Hail'
|
20 |
+
# link = f'[Hail]({url_hail})'
|
21 |
+
# st.markdown(link, unsafe_allow_html=True)
|
22 |
+
|
23 |
+
st.header("Hail Plus")
|
24 |
+
st.header("Wind (High Resolution): RTMA")
|
25 |
+
st.header("Wind (Low Resolution): ERA")
|
26 |
+
st.sidebar.success("Select a page above.")
|
27 |
+
|
28 |
+
# if "my_input" not in st.session_state:
|
29 |
+
# st.session_state["my_input"] = ""
|
30 |
+
|
31 |
+
# my_input = st.text_input("Input a text here", st.session_state["my_input"])
|
32 |
+
# submit = st.button("Submit")
|
33 |
+
# if submit:
|
34 |
+
# st.session_state["my_input"] = my_input
|
35 |
+
# st.write("You have entered: ", my_input)
|
hail scale.csv
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
c_code,occurence,RGB,R,G,B,Hail Scale,Hail Scale In,R+G
|
2 |
+
#01A0F6,408,"(1, 160, 246)",1,160,246,2,0.08,78546
|
3 |
+
#BE55DC,408,"(190, 85, 220)",190,85,220,100,3.94,3545724
|
4 |
+
#FF9000,408,"(255, 144, 0)",255,144,0,30,1.18,36608
|
5 |
+
#00C800,408,"(0, 200, 0)",0,200,0,8,0.31,199
|
6 |
+
#FF00FF,396,"(255, 0, 255)",255,0,255,75,2.95,-65536
|
7 |
+
#C00000,396,"(192, 0, 0)",192,0,0,50,1.97,-193
|
8 |
+
#FF0000,396,"(255, 0, 0)",255,0,0,40,1.57,-256
|
9 |
+
#E7C000,396,"(231, 192, 0)",231,192,0,20,0.79,44312
|
10 |
+
#FFFF00,396,"(255, 255, 0)",255,255,0,15,0.59,65024
|
11 |
+
#009000,396,"(0, 144, 0)",0,144,0,10,0.39,143
|
12 |
+
#00FF00,396,"(0, 255, 0)",0,255,0,6,0.24,254
|
13 |
+
#0000F6,396,"(0, 0, 246)",0,0,246,4,0.16,-247
|
14 |
+
#00ECEC,336,"(0, 236, 236)",0,236,236,1,0.04,55695
|
15 |
+
#7E32A7,60,"(126, 50, 167)",126,50,167,200,7.87,1045464
|
16 |
+
#7F7F7F,,"(127, 127, 127)",127,127,127,0,0,2064384
|
hail scale3b.png
ADDED
![]() |
pages/Hail Plus.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Tue Dec 6 09:56:29 2022
|
4 |
+
|
5 |
+
@author: mritchey
|
6 |
+
"""
|
7 |
+
#streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\mrms\mrms_all buffer.py"
|
8 |
+
|
9 |
+
import plotly.express as px
|
10 |
+
|
11 |
+
from joblib import Parallel, delayed
|
12 |
+
import pandas as pd
|
13 |
+
import streamlit as st
|
14 |
+
from geopy.extra.rate_limiter import RateLimiter
|
15 |
+
from geopy.geocoders import Nominatim
|
16 |
+
import folium
|
17 |
+
from streamlit_folium import st_folium
|
18 |
+
import math
|
19 |
+
import geopandas as gpd
|
20 |
+
from skimage.io import imread
|
21 |
+
from streamlit_plotly_events import plotly_events
|
22 |
+
import requests
|
23 |
+
import rasterio
|
24 |
+
import rioxarray
|
25 |
+
import numpy as np
|
26 |
+
import base64
|
27 |
+
import re
|
28 |
+
|
29 |
+
|
30 |
+
@st.cache
|
31 |
+
def geocode(address, buffer_size):
|
32 |
+
try:
|
33 |
+
address2 = address.replace(' ', '+').replace(',', '%2C')
|
34 |
+
df = pd.read_json(
|
35 |
+
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
|
36 |
+
results = df.iloc[:1, 0][0][0]['coordinates']
|
37 |
+
lat, lon = results['y'], results['x']
|
38 |
+
except:
|
39 |
+
geolocator = Nominatim(user_agent="GTA Lookup")
|
40 |
+
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
|
41 |
+
location = geolocator.geocode(address)
|
42 |
+
lat, lon = location.latitude, location.longitude
|
43 |
+
|
44 |
+
df = pd.DataFrame({'Lat': [lat], 'Lon': [lon]})
|
45 |
+
gdf = gpd.GeoDataFrame(
|
46 |
+
df, geometry=gpd.points_from_xy(df.Lon, df.Lat, crs=4326))
|
47 |
+
gdf['buffer'] = gdf['geometry'].to_crs(
|
48 |
+
3857).buffer(buffer_size/2*2580).to_crs(4326)
|
49 |
+
return gdf
|
50 |
+
|
51 |
+
|
52 |
+
def get_pngs(date):
|
53 |
+
year, month, day = date[:4], date[4:6], date[6:]
|
54 |
+
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630'
|
55 |
+
data = imread(url)[:, :, :3]
|
56 |
+
data2 = data.reshape(630*920, 3)
|
57 |
+
data2_df = pd.DataFrame(data2, columns=['R', 'G', 'B'])
|
58 |
+
data2_df2 = pd.merge(data2_df, lut[['R', 'G', 'B', 'Value', ]], on=['R', 'G', 'B'],
|
59 |
+
how='left')[['Value', ]]
|
60 |
+
data2_df2['Date'] = date
|
61 |
+
return data2_df2.reset_index()
|
62 |
+
|
63 |
+
|
64 |
+
@st.cache
|
65 |
+
def get_pngs_parallel(dates):
|
66 |
+
results1 = Parallel(n_jobs=32, prefer="threads")(
|
67 |
+
delayed(get_pngs)(i) for i in dates)
|
68 |
+
return results1
|
69 |
+
|
70 |
+
|
71 |
+
def png_data(date):
|
72 |
+
year, month, day = date[:4], date[4:6], date[6:]
|
73 |
+
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630'
|
74 |
+
data = imread(url)
|
75 |
+
return data
|
76 |
+
|
77 |
+
|
78 |
+
@st.cache(allow_output_mutation=True)
|
79 |
+
def map_folium(data, gdf):
|
80 |
+
m = folium.Map(location=[lat, lon], zoom_start=zoom, height=300)
|
81 |
+
folium.Marker(
|
82 |
+
location=[lat, lon],
|
83 |
+
popup=address).add_to(m)
|
84 |
+
|
85 |
+
folium.GeoJson(gdf['buffer']).add_to(m)
|
86 |
+
folium.raster_layers.ImageOverlay(
|
87 |
+
data, opacity=0.8, bounds=bounds).add_to(m)
|
88 |
+
return m
|
89 |
+
|
90 |
+
|
91 |
+
def to_radians(degrees):
|
92 |
+
return degrees * math.pi / 180
|
93 |
+
|
94 |
+
|
95 |
+
def lat_lon_to_bounds(lat, lng, zoom, width, height):
|
96 |
+
earth_cir_m = 40075016.686
|
97 |
+
degreesPerMeter = 360 / earth_cir_m
|
98 |
+
m_pixel_ew = earth_cir_m / math.pow(2, zoom + 8)
|
99 |
+
m_pixel_ns = earth_cir_m / \
|
100 |
+
math.pow(2, zoom + 8) * math.cos(to_radians(lat))
|
101 |
+
|
102 |
+
shift_m_ew = width/2 * m_pixel_ew
|
103 |
+
shift_m_ns = height/2 * m_pixel_ns
|
104 |
+
|
105 |
+
shift_deg_ew = shift_m_ew * degreesPerMeter
|
106 |
+
shift_deg_ns = shift_m_ns * degreesPerMeter
|
107 |
+
|
108 |
+
return [[lat-shift_deg_ns, lng-shift_deg_ew], [lat+shift_deg_ns, lng+shift_deg_ew]]
|
109 |
+
|
110 |
+
|
111 |
+
def image_to_geotiff(bounds, input_file_path, output_file_path='template.tiff'):
|
112 |
+
south, west, north, east = tuple(
|
113 |
+
[item for sublist in bounds for item in sublist])
|
114 |
+
dataset = rasterio.open(input_file_path, 'r')
|
115 |
+
bands = [1, 2, 3]
|
116 |
+
data = dataset.read(bands)
|
117 |
+
transform = rasterio.transform.from_bounds(west, south, east, north,
|
118 |
+
height=data.shape[1],
|
119 |
+
width=data.shape[2])
|
120 |
+
crs = {'init': 'epsg:4326'}
|
121 |
+
|
122 |
+
with rasterio.open(output_file_path, 'w', driver='GTiff',
|
123 |
+
height=data.shape[1],
|
124 |
+
width=data.shape[2],
|
125 |
+
count=3, dtype=data.dtype, nodata=0,
|
126 |
+
transform=transform, crs=crs,
|
127 |
+
compress='lzw') as dst:
|
128 |
+
dst.write(data, indexes=bands)
|
129 |
+
|
130 |
+
|
131 |
+
def get_mask(bounds, buffer_size):
|
132 |
+
year, month, day = date[:4], date[4:6], date[6:]
|
133 |
+
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630'
|
134 |
+
img_data = requests.get(url, verify=False).content
|
135 |
+
input_file_path = f'image_name_{date}_{var}.png'
|
136 |
+
output_file_path = 'template.tiff'
|
137 |
+
with open(input_file_path, 'wb') as handler:
|
138 |
+
handler.write(img_data)
|
139 |
+
|
140 |
+
image_to_geotiff(bounds, input_file_path, output_file_path)
|
141 |
+
rds = rioxarray.open_rasterio(output_file_path)
|
142 |
+
# rds.plot.imshow()
|
143 |
+
rds = rds.assign_coords(distance=(haversine(rds.x, rds.y, lon, lat)))
|
144 |
+
mask = rds['distance'].values <= buffer_size
|
145 |
+
mask = np.transpose(np.stack([mask, mask, mask]), (1, 2, 0))
|
146 |
+
return mask
|
147 |
+
|
148 |
+
|
149 |
+
def haversine(lon1, lat1, lon2, lat2):
|
150 |
+
# convert decimal degrees to radians
|
151 |
+
lon1 = np.deg2rad(lon1)
|
152 |
+
lon2 = np.deg2rad(lon2)
|
153 |
+
lat1 = np.deg2rad(lat1)
|
154 |
+
lat2 = np.deg2rad(lat2)
|
155 |
+
|
156 |
+
# haversine formula
|
157 |
+
dlon = lon2 - lon1
|
158 |
+
dlat = lat2 - lat1
|
159 |
+
a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
|
160 |
+
c = 2 * np.arcsin(np.sqrt(a))
|
161 |
+
r = 6371
|
162 |
+
return c * r
|
163 |
+
|
164 |
+
|
165 |
+
def render_svg(svg):
|
166 |
+
"""Renders the given svg string."""
|
167 |
+
b64 = base64.b64encode(svg.encode('utf-8')).decode("utf-8")
|
168 |
+
html = r'<img src="data:image/svg+xml;base64,%s"/>' % b64
|
169 |
+
st.write(html, unsafe_allow_html=True)
|
170 |
+
|
171 |
+
|
172 |
+
def rgb_to_hex(rgb):
|
173 |
+
return '#'+'%02x%02x%02x' % rgb
|
174 |
+
|
175 |
+
|
176 |
+
def get_legend_lut(prod_root):
|
177 |
+
url_legend = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/shared/fetch_svg_legend_via_config.php?web_resources_dir=/var/www/html/qvs/product_viewer/resources/&config_name=title_and_legend_config.txt&product={prod_root}'
|
178 |
+
r = requests.get(url_legend) # Get the webpage
|
179 |
+
svg = r.content.decode() # Decoded response content with the svg string
|
180 |
+
|
181 |
+
if svg.find('size="16">mm</text>') > 0:
|
182 |
+
svg = svg.replace('size="16">mm</text>', 'size="16">in</text>')
|
183 |
+
beg_string = '"13">'
|
184 |
+
end_string = '</text>'
|
185 |
+
res = re.findall('%s(.*)%s' % (beg_string, end_string), svg)
|
186 |
+
for mm in res:
|
187 |
+
inc = round(float(mm)*0.0393701, 2)
|
188 |
+
svg = svg.replace(f'{beg_string}{mm}{end_string}',
|
189 |
+
f'{beg_string}{str(inc)}{end_string}')
|
190 |
+
|
191 |
+
elif svg.find('font-size="12">') > 0:
|
192 |
+
beg_string = '"12">'
|
193 |
+
end_string = '</text>'
|
194 |
+
|
195 |
+
else:
|
196 |
+
beg_string = '"13">'
|
197 |
+
end_string = '</text>'
|
198 |
+
|
199 |
+
#Make LUT
|
200 |
+
values = re.findall('%s(.*)%s' % (beg_string, end_string), svg)
|
201 |
+
|
202 |
+
beg_string, end_string = 'fill="rgb(', ')" />'
|
203 |
+
rgb = re.findall('%s(.*)%s' % (beg_string, end_string), svg)
|
204 |
+
rgb = [eval(i[0]) for i in rgb]
|
205 |
+
|
206 |
+
beg_string, end_string = 'style="fill:rgb(', ');" />'
|
207 |
+
rgb2 = re.findall('%s(.*)%s' % (beg_string, end_string), svg)
|
208 |
+
rgb2 = [eval(i[0]) for i in rgb2]
|
209 |
+
|
210 |
+
rgb = rgb2+rgb
|
211 |
+
|
212 |
+
lut = pd.DataFrame({'Value': values,
|
213 |
+
'RGB': rgb})
|
214 |
+
lut['R'], lut['G'], lut['B'] = lut['RGB'].str
|
215 |
+
lut[['R', 'G', 'B']] = lut[['R', 'G', 'B']].astype('uint8')
|
216 |
+
lut['Value'] = lut['Value'].astype(float)
|
217 |
+
lut['hex'] = lut['RGB'].apply(rgb_to_hex)
|
218 |
+
return svg, lut
|
219 |
+
|
220 |
+
|
221 |
+
#Set Columns
|
222 |
+
st.set_page_config(layout="wide")
|
223 |
+
|
224 |
+
|
225 |
+
#Input Data
|
226 |
+
zoom = 10
|
227 |
+
address = st.sidebar.text_input(
|
228 |
+
"Address", "123 Main Street, Columbus, OH 43215")
|
229 |
+
var = st.sidebar.selectbox(
|
230 |
+
'Product:', ('Hail', 'Flooding', 'Rain: Radar', 'Rain: Multi Sensor', 'Tornado'))
|
231 |
+
|
232 |
+
date = st.sidebar.date_input("Date", pd.Timestamp(
|
233 |
+
2022, 9, 8), key='date').strftime('%Y%m%d')
|
234 |
+
d = pd.Timestamp(date)
|
235 |
+
days_within = st.sidebar.selectbox('Within Days:', (5, 30, 60))
|
236 |
+
|
237 |
+
mask_select = st.sidebar.radio('Only Show Buffer Data:', ("No", "Yes"))
|
238 |
+
buffer_size = st.sidebar.radio('Buffer Size (miles):', (5, 10, 15))
|
239 |
+
|
240 |
+
year, month, day = date[:4], date[4:6], date[6:]
|
241 |
+
hour = 23
|
242 |
+
minute = 0
|
243 |
+
|
244 |
+
|
245 |
+
#Select Variable
|
246 |
+
if var == 'Hail':
|
247 |
+
var_input = 'hails&product=MESHMAX1440M'
|
248 |
+
elif var == 'Flooding':
|
249 |
+
var_input = 'flash&product=FL_ARI24H'
|
250 |
+
elif var == 'Rain: Radar':
|
251 |
+
var_input = 'q3rads&product=Q3EVAP24H'
|
252 |
+
elif var == 'Rain: Multi Sensor':
|
253 |
+
var_input = 'q3mss&product=P1_Q3MS24H'
|
254 |
+
elif var == 'Tornado':
|
255 |
+
var_input = 'azsh&product=RT1440M'
|
256 |
+
|
257 |
+
prod_root = var_input[var_input.find('=')+1:]
|
258 |
+
|
259 |
+
#Geocode
|
260 |
+
gdf = geocode(address, buffer_size)
|
261 |
+
lat, lon = tuple(gdf[['Lat', 'Lon']].values[0])
|
262 |
+
|
263 |
+
#Get Value
|
264 |
+
url = 'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/get_multi_domain_rect_binary_value.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/'\
|
265 |
+
+ f'&prod_root={prod_root}&lon={lon}&lat={lat}&year={year}&month={month}&day={day}&hour={hour}&minute={minute}'
|
266 |
+
|
267 |
+
response = requests.get(url, verify=False).json()
|
268 |
+
qvs_values = pd.DataFrame(response, index=[0])[
|
269 |
+
['qvs_value', 'qvs_units']].values[0]
|
270 |
+
qvs_value = qvs_values[0]
|
271 |
+
qvs_unit = qvs_values[1]
|
272 |
+
|
273 |
+
#Get PNG Focus
|
274 |
+
data = png_data(date)
|
275 |
+
|
276 |
+
#Get PNG Max
|
277 |
+
start_date, end_date = d - \
|
278 |
+
pd.Timedelta(days=days_within), d+pd.Timedelta(days=days_within)
|
279 |
+
dates = pd.date_range(start_date,
|
280 |
+
end_date).strftime('%Y%m%d')
|
281 |
+
#Get SVG and Lut
|
282 |
+
svg, lut = get_legend_lut(prod_root)
|
283 |
+
|
284 |
+
bounds = lat_lon_to_bounds(lat, lon, zoom, 920, 630)
|
285 |
+
|
286 |
+
results1 = get_pngs_parallel(dates)
|
287 |
+
# results1 = Parallel(n_jobs=32, prefer="threads")(delayed(get_pngs)(i) for i in dates)
|
288 |
+
results = pd.concat(results1).fillna(0)
|
289 |
+
max_data = results.groupby('index')[['Value']].max()
|
290 |
+
|
291 |
+
max_data2 = pd.merge(max_data,
|
292 |
+
lut[['R', 'G', 'B', 'Value']],
|
293 |
+
on=['Value'],
|
294 |
+
how='left')[['R', 'G', 'B']]
|
295 |
+
|
296 |
+
data_max = max_data2.values.reshape(630, 920, 3)
|
297 |
+
|
298 |
+
#Masked Data
|
299 |
+
if mask_select == "Yes":
|
300 |
+
mask = get_mask(bounds, buffer_size)
|
301 |
+
mask1 = mask[:, :, 0].reshape(630*920)
|
302 |
+
results = pd.concat([i[mask1] for i in results1])
|
303 |
+
data_max = data_max*mask
|
304 |
+
else:
|
305 |
+
pass
|
306 |
+
|
307 |
+
|
308 |
+
#Bar
|
309 |
+
if var == 'Tornado':
|
310 |
+
bar = results.query("Value>.006").groupby(
|
311 |
+
['Date', 'Value'])['index'].count().reset_index()
|
312 |
+
else:
|
313 |
+
bar = results.query("Value>.2").groupby(['Date', 'Value'])[
|
314 |
+
'index'].count().reset_index()
|
315 |
+
|
316 |
+
bar['Date'] = pd.to_datetime(bar['Date'])
|
317 |
+
|
318 |
+
bar = bar.reset_index()
|
319 |
+
bar.columns = ['level_0', 'Date', 'Value', 'count']
|
320 |
+
bar = bar.sort_values('Value', ascending=True)
|
321 |
+
bar['Value'] = bar['Value'].astype(str)
|
322 |
+
|
323 |
+
|
324 |
+
color_discrete_map = lut[['Value', 'hex']].sort_values(
|
325 |
+
'Value', ascending=True).astype(str)
|
326 |
+
color_discrete_map = color_discrete_map.set_index(
|
327 |
+
'Value').to_dict()['hex']
|
328 |
+
|
329 |
+
fig = px.bar(bar, x="Date", y="count", color="Value",
|
330 |
+
barmode='stack',
|
331 |
+
color_discrete_map=color_discrete_map)
|
332 |
+
|
333 |
+
#Submit Url to New Tab
|
334 |
+
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/index.php?web_exec_mode=run&menu=menu_config.txt&year={year}&month={month}&day={day}&hour=23&minute=30&time_mode=static&zoom=9&clon={lon}&clat={lat}&base=0&overlays=1&mping_mode=0&product_type={var_input}&qpe_pal_option=0&opacity=.75&looping_active=off&num_frames=6&frame_step=200&seconds_step=600'
|
335 |
+
|
336 |
+
|
337 |
+
#Map Focus
|
338 |
+
m = map_folium(data, gdf)
|
339 |
+
#Map Max
|
340 |
+
m_max = map_folium(data_max, gdf)
|
341 |
+
|
342 |
+
with st.container():
|
343 |
+
col1, col2 = st.columns(2)
|
344 |
+
|
345 |
+
with col1:
|
346 |
+
st.header(f'{var} on {pd.Timestamp(date).strftime("%D")}')
|
347 |
+
st_folium(m, height=300)
|
348 |
+
with col2:
|
349 |
+
st.header(
|
350 |
+
f'Max from {start_date.strftime("%D")} to {end_date.strftime("%D")}')
|
351 |
+
st_folium(m_max, height=300)
|
352 |
+
|
353 |
+
with st.container():
|
354 |
+
col1, col2, col3 = st.columns((1, 10, 6))
|
355 |
+
with col1:
|
356 |
+
render_svg(svg)
|
357 |
+
with col2:
|
358 |
+
link = f'[Go To MRMS Site]({url})'
|
359 |
+
st.markdown(link, unsafe_allow_html=True)
|
360 |
+
selected_points = plotly_events(
|
361 |
+
fig, click_event=True, hover_event=False)
|
362 |
+
with col3:
|
363 |
+
try:
|
364 |
+
date2 = pd.Timestamp(selected_points[0]['x']).strftime('%Y%m%d')
|
365 |
+
data2 = png_data(date2)
|
366 |
+
m3 = map_folium(data2, gdf)
|
367 |
+
st.header(f'{var} on {pd.Timestamp(date2).strftime("%D")}')
|
368 |
+
st_folium(m3, height=300)
|
369 |
+
except:
|
370 |
+
pass
|
371 |
+
|
372 |
+
st.markdown(""" <style>
|
373 |
+
#MainMenu {visibility: hidden;}
|
374 |
+
footer {visibility: hidden;}
|
375 |
+
</style> """, unsafe_allow_html=True)
|
pages/Hail.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
# -*- coding: utf-8 -*-
|
4 |
+
"""
|
5 |
+
Created on Tue Dec 6 09:56:29 2022
|
6 |
+
|
7 |
+
@author: mritchey
|
8 |
+
"""
|
9 |
+
#streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\mrms\mrms_hail2 buffer.py"
|
10 |
+
|
11 |
+
import plotly.express as px
|
12 |
+
import os
|
13 |
+
from PIL import Image
|
14 |
+
from joblib import Parallel, delayed
|
15 |
+
import pandas as pd
|
16 |
+
import streamlit as st
|
17 |
+
from geopy.extra.rate_limiter import RateLimiter
|
18 |
+
from geopy.geocoders import Nominatim
|
19 |
+
import folium
|
20 |
+
from streamlit_folium import st_folium
|
21 |
+
import math
|
22 |
+
import geopandas as gpd
|
23 |
+
from skimage.io import imread
|
24 |
+
from streamlit_plotly_events import plotly_events
|
25 |
+
import requests
|
26 |
+
from requests.packages.urllib3.exceptions import InsecureRequestWarning
|
27 |
+
import rasterio
|
28 |
+
import rioxarray
|
29 |
+
import numpy as np
|
30 |
+
|
31 |
+
|
32 |
+
@st.cache
|
33 |
+
def geocode(address, buffer_size):
|
34 |
+
try:
|
35 |
+
address2 = address.replace(' ', '+').replace(',', '%2C')
|
36 |
+
df = pd.read_json(
|
37 |
+
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
|
38 |
+
results = df.iloc[:1, 0][0][0]['coordinates']
|
39 |
+
lat, lon = results['y'], results['x']
|
40 |
+
except:
|
41 |
+
geolocator = Nominatim(user_agent="GTA Lookup")
|
42 |
+
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
|
43 |
+
location = geolocator.geocode(address)
|
44 |
+
lat, lon = location.latitude, location.longitude
|
45 |
+
|
46 |
+
df = pd.DataFrame({'Lat': [lat], 'Lon': [lon]})
|
47 |
+
gdf = gpd.GeoDataFrame(
|
48 |
+
df, geometry=gpd.points_from_xy(df.Lon, df.Lat, crs=4326))
|
49 |
+
gdf['buffer'] = gdf['geometry'].to_crs(
|
50 |
+
3857).buffer(buffer_size/2*2580).to_crs(4326)
|
51 |
+
return gdf
|
52 |
+
|
53 |
+
|
54 |
+
@st.cache
|
55 |
+
def get_pngs(date):
|
56 |
+
year, month, day = date[:4], date[4:6], date[6:]
|
57 |
+
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630'
|
58 |
+
data = imread(url)[:, :, :3]
|
59 |
+
data2 = data.reshape(630*920, 3)
|
60 |
+
data2_df = pd.DataFrame(data2, columns=['R', 'G', 'B'])
|
61 |
+
data2_df2 = pd.merge(data2_df, lut[['R', 'G', 'B', 'Hail Scale', 'Hail Scale In']], on=['R', 'G', 'B'],
|
62 |
+
how='left')[['Hail Scale', 'Hail Scale In']]
|
63 |
+
data2_df2['Date'] = date
|
64 |
+
return data2_df2.reset_index()
|
65 |
+
|
66 |
+
|
67 |
+
@st.cache
|
68 |
+
def get_pngs_parallel(dates):
|
69 |
+
results1 = Parallel(n_jobs=32, prefer="threads")(
|
70 |
+
delayed(get_pngs)(i) for i in dates)
|
71 |
+
return results1
|
72 |
+
|
73 |
+
|
74 |
+
@st.cache
|
75 |
+
def png_data(date):
|
76 |
+
year, month, day = date[:4], date[4:6], date[6:]
|
77 |
+
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630'
|
78 |
+
data = imread(url)
|
79 |
+
return data
|
80 |
+
|
81 |
+
|
82 |
+
@st.cache(allow_output_mutation=True)
|
83 |
+
def map_folium(data, gdf):
|
84 |
+
m = folium.Map(location=[lat, lon], zoom_start=zoom, height=300)
|
85 |
+
folium.Marker(
|
86 |
+
location=[lat, lon],
|
87 |
+
popup=address).add_to(m)
|
88 |
+
|
89 |
+
folium.GeoJson(gdf['buffer']).add_to(m)
|
90 |
+
folium.raster_layers.ImageOverlay(
|
91 |
+
data, opacity=0.8, bounds=bounds).add_to(m)
|
92 |
+
return m
|
93 |
+
|
94 |
+
|
95 |
+
def to_radians(degrees):
|
96 |
+
return degrees * math.pi / 180
|
97 |
+
|
98 |
+
|
99 |
+
def lat_lon_to_bounds(lat, lng, zoom, width, height):
|
100 |
+
earth_cir_m = 40075016.686
|
101 |
+
degreesPerMeter = 360 / earth_cir_m
|
102 |
+
m_pixel_ew = earth_cir_m / math.pow(2, zoom + 8)
|
103 |
+
m_pixel_ns = earth_cir_m / \
|
104 |
+
math.pow(2, zoom + 8) * math.cos(to_radians(lat))
|
105 |
+
|
106 |
+
shift_m_ew = width/2 * m_pixel_ew
|
107 |
+
shift_m_ns = height/2 * m_pixel_ns
|
108 |
+
|
109 |
+
shift_deg_ew = shift_m_ew * degreesPerMeter
|
110 |
+
shift_deg_ns = shift_m_ns * degreesPerMeter
|
111 |
+
|
112 |
+
return [[lat-shift_deg_ns, lng-shift_deg_ew], [lat+shift_deg_ns, lng+shift_deg_ew]]
|
113 |
+
|
114 |
+
|
115 |
+
def image_to_geotiff(bounds, input_file_path, output_file_path='template.tiff'):
|
116 |
+
south, west, north, east = tuple(
|
117 |
+
[item for sublist in bounds for item in sublist])
|
118 |
+
dataset = rasterio.open(input_file_path, 'r')
|
119 |
+
bands = [1, 2, 3]
|
120 |
+
data = dataset.read(bands)
|
121 |
+
transform = rasterio.transform.from_bounds(west, south, east, north,
|
122 |
+
height=data.shape[1],
|
123 |
+
width=data.shape[2])
|
124 |
+
crs = {'init': 'epsg:4326'}
|
125 |
+
|
126 |
+
with rasterio.open(output_file_path, 'w', driver='GTiff',
|
127 |
+
height=data.shape[1],
|
128 |
+
width=data.shape[2],
|
129 |
+
count=3, dtype=data.dtype, nodata=0,
|
130 |
+
transform=transform, crs=crs,
|
131 |
+
compress='lzw') as dst:
|
132 |
+
dst.write(data, indexes=bands)
|
133 |
+
|
134 |
+
|
135 |
+
def get_mask(bounds, buffer_size):
|
136 |
+
year, month, day = date[:4], date[4:6], date[6:]
|
137 |
+
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/render_multi_domain_product_layer.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/&prod_root={prod_root}&qperate_pal_option=0&qpe_pal_option=0&year={year}&month={month}&day={day}&hour={hour}&minute={minute}&clon={lon}&clat={lat}&zoom={zoom}&width=920&height=630'
|
138 |
+
img_data = requests.get(url, verify=False).content
|
139 |
+
input_file_path = f'image_name_{date}_{var}.png'
|
140 |
+
output_file_path = 'template.tiff'
|
141 |
+
with open(input_file_path, 'wb') as handler:
|
142 |
+
handler.write(img_data)
|
143 |
+
|
144 |
+
image_to_geotiff(bounds, input_file_path, output_file_path)
|
145 |
+
rds = rioxarray.open_rasterio(output_file_path)
|
146 |
+
# rds.plot.imshow()
|
147 |
+
|
148 |
+
rds = rds.assign_coords(distance=(haversine(rds.x, rds.y, lon, lat)))
|
149 |
+
mask = rds['distance'].values <= buffer_size
|
150 |
+
mask = np.transpose(np.stack([mask, mask, mask]), (1, 2, 0))
|
151 |
+
return mask
|
152 |
+
|
153 |
+
|
154 |
+
def haversine(lon1, lat1, lon2, lat2):
|
155 |
+
# convert decimal degrees to radians
|
156 |
+
lon1 = np.deg2rad(lon1)
|
157 |
+
lon2 = np.deg2rad(lon2)
|
158 |
+
lat1 = np.deg2rad(lat1)
|
159 |
+
lat2 = np.deg2rad(lat2)
|
160 |
+
|
161 |
+
# haversine formula
|
162 |
+
dlon = lon2 - lon1
|
163 |
+
dlat = lat2 - lat1
|
164 |
+
a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
|
165 |
+
c = 2 * np.arcsin(np.sqrt(a))
|
166 |
+
r = 6371
|
167 |
+
return c * r
|
168 |
+
|
169 |
+
|
170 |
+
#Set Columns
|
171 |
+
st.set_page_config(layout="wide")
|
172 |
+
col1, col2, col3 = st.columns((3))
|
173 |
+
col1, col2, col3 = st.columns((3, 3, 1))
|
174 |
+
|
175 |
+
#Input Data
|
176 |
+
zoom = 10
|
177 |
+
_ = st.sidebar.text_input(
|
178 |
+
"Claim Number", "836-xxxxxxx")
|
179 |
+
address = st.sidebar.text_input(
|
180 |
+
"Address", "123 Main Street, Cincinnati, OH 43215")
|
181 |
+
|
182 |
+
date = st.sidebar.date_input("Date", pd.Timestamp(
|
183 |
+
2022, 7, 6), key='date').strftime('%Y%m%d')
|
184 |
+
d = pd.Timestamp(date)
|
185 |
+
days_within = st.sidebar.selectbox('Within Days:', (5, 30, 60, 90, 180))
|
186 |
+
var = 'Hail'
|
187 |
+
var_input = 'hails&product=MESHMAX1440M'
|
188 |
+
mask_select = st.sidebar.radio('Only Show Buffer Data:', ("No", "Yes"))
|
189 |
+
buffer_size = st.sidebar.radio('Buffer Size (miles):', (5, 10, 15))
|
190 |
+
|
191 |
+
year, month, day = date[:4], date[4:6], date[6:]
|
192 |
+
hour = 23
|
193 |
+
minute = 30
|
194 |
+
|
195 |
+
prod_root = var_input[var_input.find('=')+1:]
|
196 |
+
|
197 |
+
#Geocode
|
198 |
+
gdf = geocode(address, buffer_size)
|
199 |
+
lat, lon = tuple(gdf[['Lat', 'Lon']].values[0])
|
200 |
+
|
201 |
+
#Get Value
|
202 |
+
url = 'https://mrms.nssl.noaa.gov/qvs/product_viewer/local/get_multi_domain_rect_binary_value.php?mode=run&cpp_exec_dir=/home/metop/web/specific/opv/&web_resources_dir=/var/www/html/qvs/product_viewer/resources/'\
|
203 |
+
+ f'&prod_root={prod_root}&lon={lon}&lat={lat}&year={year}&month={month}&day={day}&hour={hour}&minute={minute}'
|
204 |
+
|
205 |
+
response = requests.get(url, verify=False).json()
|
206 |
+
qvs_values = pd.DataFrame(response, index=[0])[
|
207 |
+
['qvs_value', 'qvs_units']].values[0]
|
208 |
+
qvs_value = qvs_values[0]
|
209 |
+
qvs_unit = qvs_values[1]
|
210 |
+
|
211 |
+
#Get PNG Focus
|
212 |
+
data = png_data(date)
|
213 |
+
|
214 |
+
#Legend
|
215 |
+
legend = Image.open('hail scale3b.png')
|
216 |
+
|
217 |
+
#Get PNG Max
|
218 |
+
start_date, end_date = d - \
|
219 |
+
pd.Timedelta(days=days_within), d+pd.Timedelta(days=days_within)
|
220 |
+
dates = pd.date_range(start_date,
|
221 |
+
end_date).strftime('%Y%m%d')
|
222 |
+
lut = pd.read_csv('hail scale.csv')
|
223 |
+
bounds = lat_lon_to_bounds(lat, lon, zoom, 920, 630)
|
224 |
+
|
225 |
+
|
226 |
+
results1 = get_pngs_parallel(dates)
|
227 |
+
# results1 = Parallel(n_jobs=32, prefer="threads")(delayed(get_pngs)(i) for i in dates)
|
228 |
+
results = pd.concat(results1)
|
229 |
+
max_data = results.groupby('index')[['Hail Scale']].max()
|
230 |
+
|
231 |
+
max_data2 = pd.merge(max_data,
|
232 |
+
lut[['R', 'G', 'B', 'Hail Scale']],
|
233 |
+
on=['Hail Scale'],
|
234 |
+
how='left')[['R', 'G', 'B']]
|
235 |
+
|
236 |
+
data_max = max_data2.values.reshape(630, 920, 3)
|
237 |
+
|
238 |
+
#Masked Data
|
239 |
+
if mask_select == "Yes":
|
240 |
+
mask = get_mask(bounds, buffer_size)
|
241 |
+
mask1 = mask[:, :, 0].reshape(630*920)
|
242 |
+
results = pd.concat([i[mask1] for i in results1])
|
243 |
+
data_max = data_max*mask
|
244 |
+
else:
|
245 |
+
pass
|
246 |
+
|
247 |
+
|
248 |
+
#Bar
|
249 |
+
bar = results.query("`Hail Scale`>4").groupby(
|
250 |
+
['Date', 'Hail Scale In'])['index'].count().reset_index()
|
251 |
+
bar['Date'] = pd.to_datetime(bar['Date'])
|
252 |
+
|
253 |
+
bar = bar.reset_index()
|
254 |
+
bar.columns = ['level_0', 'Date', 'Hail Scale In', 'count']
|
255 |
+
bar['Hail Scale In'] = bar['Hail Scale In'].astype(str)
|
256 |
+
bar = bar.sort_values('Hail Scale In', ascending=True)
|
257 |
+
|
258 |
+
color_discrete_map = lut[['Hail Scale In', 'c_code']].sort_values(
|
259 |
+
'Hail Scale In', ascending=True).astype(str)
|
260 |
+
color_discrete_map = color_discrete_map.set_index(
|
261 |
+
'Hail Scale In').to_dict()['c_code']
|
262 |
+
|
263 |
+
fig = px.bar(bar, x="Date", y="count", color="Hail Scale In",
|
264 |
+
barmode='stack',
|
265 |
+
color_discrete_map=color_discrete_map)
|
266 |
+
|
267 |
+
#Submit Url to New Tab
|
268 |
+
url = f'https://mrms.nssl.noaa.gov/qvs/product_viewer/index.php?web_exec_mode=run&menu=menu_config.txt&year={year}&month={month}&day={day}&hour=23&minute=30&time_mode=static&zoom=9&clon={lon}&clat={lat}&base=0&overlays=1&mping_mode=0&product_type={var_input}&qpe_pal_option=0&opacity=.75&looping_active=off&num_frames=6&frame_step=200&seconds_step=600'
|
269 |
+
|
270 |
+
#Map Focus
|
271 |
+
m = map_folium(data, gdf)
|
272 |
+
#Map Max
|
273 |
+
m_max = map_folium(data_max, gdf)
|
274 |
+
|
275 |
+
with st.container():
|
276 |
+
col1, col2, col3 = st.columns((1, 2, 2))
|
277 |
+
with col1:
|
278 |
+
link = f'[Go To MRMS Site]({url})'
|
279 |
+
st.markdown(link, unsafe_allow_html=True)
|
280 |
+
st.image(legend)
|
281 |
+
with col2:
|
282 |
+
st.header(f'{var} on {pd.Timestamp(date).strftime("%D")}')
|
283 |
+
st_folium(m, height=300)
|
284 |
+
with col3:
|
285 |
+
st.header(
|
286 |
+
f'Max from {start_date.strftime("%D")} to {end_date.strftime("%D")}')
|
287 |
+
st_folium(m_max, height=300)
|
288 |
+
|
289 |
+
try:
|
290 |
+
selected_points = plotly_events(fig, click_event=True, hover_event=False)
|
291 |
+
date2 = pd.Timestamp(selected_points[0]['x']).strftime('%Y%m%d')
|
292 |
+
data2 = png_data(date2)
|
293 |
+
m3 = map_folium(data2, gdf)
|
294 |
+
st.header(f'{var} on {pd.Timestamp(date2).strftime("%D")}')
|
295 |
+
st_folium(m3, height=300)
|
296 |
+
except:
|
297 |
+
pass
|
298 |
+
|
299 |
+
|
300 |
+
st.markdown(""" <style>
|
301 |
+
#MainMenu {visibility: hidden;}
|
302 |
+
footer {visibility: hidden;}
|
303 |
+
</style> """, unsafe_allow_html=True)
|
304 |
+
|
305 |
+
|
306 |
+
|
pages/Wind (High Resolution): RTMA.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Fri Oct 14 10:35:25 2022
|
4 |
+
@author: mritchey
|
5 |
+
"""
|
6 |
+
|
7 |
+
import datetime
|
8 |
+
import glob
|
9 |
+
import os
|
10 |
+
import urllib.request
|
11 |
+
import branca.colormap as cm
|
12 |
+
import folium
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import plotly.express as px
|
16 |
+
import rasterio
|
17 |
+
import rioxarray
|
18 |
+
import streamlit as st
|
19 |
+
from geopy.extra.rate_limiter import RateLimiter
|
20 |
+
from geopy.geocoders import Nominatim
|
21 |
+
from joblib import Parallel, delayed
|
22 |
+
from matplotlib import colors as colors
|
23 |
+
from streamlit_folium import st_folium
|
24 |
+
from threading import Thread
|
25 |
+
|
26 |
+
|
27 |
+
def download_file_get_data(url, rows, columns):
|
28 |
+
file = urllib.request.urlretrieve(url, url[-23:])[0]
|
29 |
+
rds = rioxarray.open_rasterio(file)
|
30 |
+
wind_mph = rds.rio.reproject("EPSG:4326")[0, rows, columns].values*2.23694
|
31 |
+
time = url[-15:-11]
|
32 |
+
return [wind_mph, time]
|
33 |
+
|
34 |
+
|
35 |
+
def threading(df_input, func_input):
|
36 |
+
starttime = time.time()
|
37 |
+
tasks_thread = df_input
|
38 |
+
results_thread = []
|
39 |
+
|
40 |
+
def thread_func(value_input):
|
41 |
+
response = func_input(value_input)
|
42 |
+
results_thread.append(response)
|
43 |
+
return True
|
44 |
+
|
45 |
+
threads = []
|
46 |
+
for i in range(len(tasks_thread)):
|
47 |
+
process = Thread(target=thread_func, args=[tasks_thread[i]])
|
48 |
+
process.start()
|
49 |
+
threads.append(process)
|
50 |
+
|
51 |
+
for process in threads:
|
52 |
+
process.join()
|
53 |
+
print(f'Time: {str(round((time.time()-starttime)/60,5))} Minutes')
|
54 |
+
return results_thread
|
55 |
+
|
56 |
+
|
57 |
+
def mapvalue2color(value, cmap):
|
58 |
+
if np.isnan(value):
|
59 |
+
return (1, 0, 0, 0)
|
60 |
+
else:
|
61 |
+
return colors.to_rgba(cmap(value), 0.7)
|
62 |
+
|
63 |
+
|
64 |
+
def geocode(address):
|
65 |
+
try:
|
66 |
+
address2 = address.replace(' ', '+').replace(',', '%2C')
|
67 |
+
df = pd.read_json(
|
68 |
+
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
|
69 |
+
results = df.iloc[:1, 0][0][0]['coordinates']
|
70 |
+
lat, lon = results['y'], results['x']
|
71 |
+
except:
|
72 |
+
geolocator = Nominatim(user_agent="GTA Lookup")
|
73 |
+
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
|
74 |
+
location = geolocator.geocode(address)
|
75 |
+
lat, lon = location.latitude, location.longitude
|
76 |
+
return lat, lon
|
77 |
+
|
78 |
+
|
79 |
+
@st.cache
|
80 |
+
def get_grib_data(url, d, t):
|
81 |
+
file = urllib.request.urlretrieve(url, f'{d}{t}{type_wind}.grib2')[0]
|
82 |
+
return file
|
83 |
+
|
84 |
+
|
85 |
+
# @st.cache
|
86 |
+
def graph_entire_day(d, rows, columns):
|
87 |
+
year, month, day = d[:4], d[4:6], d[6:8]
|
88 |
+
times = [f'0{str(i)}'[-2:] for i in range(0, 24)]
|
89 |
+
urls = [
|
90 |
+
f'https://mtarchive.geol.iastate.edu/{year}/{month}/{day}/grib2/ncep/RTMA/{d}{t}00_{type_wind.upper()}.grib2' for t in times]
|
91 |
+
|
92 |
+
results = Parallel(n_jobs=4)(
|
93 |
+
delayed(download_file_get_data)(i, rows, columns) for i in urls)
|
94 |
+
|
95 |
+
df_all = pd.DataFrame(results, columns=['MPH', 'Time'])
|
96 |
+
df_all['MPH'] = df_all['MPH'].round(2)
|
97 |
+
df_all['Time'] = pd.to_datetime(d+df_all['Time'], format='%Y%m%d%H%M')
|
98 |
+
return df_all
|
99 |
+
|
100 |
+
|
101 |
+
@st.cache
|
102 |
+
def convert_df(df):
|
103 |
+
return df.to_csv(index=0).encode('utf-8')
|
104 |
+
|
105 |
+
# try:
|
106 |
+
# for i in glob.glob('*.grib2'):
|
107 |
+
# try:
|
108 |
+
# os.remove(i)
|
109 |
+
# except:
|
110 |
+
# pass
|
111 |
+
# except:
|
112 |
+
# pass
|
113 |
+
|
114 |
+
|
115 |
+
st.set_page_config(layout="wide")
|
116 |
+
col1, col2 = st.columns((2))
|
117 |
+
|
118 |
+
address = st.sidebar.text_input(
|
119 |
+
"Address", "123 Main Street, Columbus, OH 43215")
|
120 |
+
d = st.sidebar.date_input(
|
121 |
+
"Date", pd.Timestamp(2022, 9, 28)).strftime('%Y%m%d')
|
122 |
+
|
123 |
+
time = st.sidebar.selectbox('Time:', ('12 AM', '6 AM', '12 PM', '6 PM',))
|
124 |
+
type_wind = st.sidebar.selectbox('Type:', ('Gust', 'Wind'))
|
125 |
+
entire_day = st.sidebar.radio(
|
126 |
+
'Graph Entire Day (Takes a Bit):', ('No', 'Yes'))
|
127 |
+
|
128 |
+
if time[-2:] == 'PM' and int(time[:2].strip()) < 12:
|
129 |
+
t = datetime.time(int(time[:2].strip())+12, 00).strftime('%H')+'00'
|
130 |
+
elif time[-2:] == 'AM' and int(time[:2].strip()) == 12:
|
131 |
+
t = '0000'
|
132 |
+
else:
|
133 |
+
t = datetime.time(int(time[:2].strip()), 00).strftime('%H')+'00'
|
134 |
+
|
135 |
+
year, month, day = d[:4], d[4:6], d[6:8]
|
136 |
+
|
137 |
+
url = f'https://mtarchive.geol.iastate.edu/{year}/{month}/{day}/grib2/ncep/RTMA/{d}{t}_{type_wind.upper()}.grib2'
|
138 |
+
file = get_grib_data(url, d, t)
|
139 |
+
|
140 |
+
lat, lon = geocode(address)
|
141 |
+
|
142 |
+
rds = rioxarray.open_rasterio(file)
|
143 |
+
projected = rds.rio.reproject("EPSG:4326")
|
144 |
+
wind_mph = projected.sel(x=lon, y=lat, method="nearest").values*2.23694
|
145 |
+
|
146 |
+
affine = projected.rio.transform()
|
147 |
+
|
148 |
+
rows, columns = rasterio.transform.rowcol(affine, lon, lat)
|
149 |
+
|
150 |
+
size = 40
|
151 |
+
|
152 |
+
projected2 = projected[0, rows-size:rows+size, columns-size:columns+size]
|
153 |
+
|
154 |
+
img = projected2.values*2.23694
|
155 |
+
boundary = projected2.rio.bounds()
|
156 |
+
left, bottom, right, top = boundary
|
157 |
+
|
158 |
+
img[img < 0.0] = np.nan
|
159 |
+
|
160 |
+
clat = (bottom + top)/2
|
161 |
+
clon = (left + right)/2
|
162 |
+
|
163 |
+
vmin = np.floor(np.nanmin(img))
|
164 |
+
vmax = np.ceil(np.nanmax(img))
|
165 |
+
|
166 |
+
colormap = cm.LinearColormap(
|
167 |
+
colors=['blue', 'lightblue', 'red'], vmin=vmin, vmax=vmax)
|
168 |
+
|
169 |
+
m = folium.Map(location=[lat, lon], zoom_start=9, height=500)
|
170 |
+
|
171 |
+
folium.Marker(
|
172 |
+
location=[lat, lon],
|
173 |
+
popup=f"{wind_mph[0].round(2)} MPH").add_to(m)
|
174 |
+
|
175 |
+
folium.raster_layers.ImageOverlay(
|
176 |
+
image=img,
|
177 |
+
name='Wind Speed Map',
|
178 |
+
opacity=.8,
|
179 |
+
bounds=[[bottom, left], [top, right]],
|
180 |
+
colormap=lambda value: mapvalue2color(value, colormap)
|
181 |
+
).add_to(m)
|
182 |
+
|
183 |
+
|
184 |
+
folium.LayerControl().add_to(m)
|
185 |
+
colormap.caption = 'Wind Speed: MPH'
|
186 |
+
m.add_child(colormap)
|
187 |
+
|
188 |
+
with col1:
|
189 |
+
st.title('RTMA Model')
|
190 |
+
url_error='https://mattritchey-rtma.hf.space/'
|
191 |
+
link = f'[If RTMA not working click here]({url_error})'
|
192 |
+
st.markdown(link, unsafe_allow_html=True)
|
193 |
+
|
194 |
+
st.write(
|
195 |
+
f"{type_wind.title()} Speed: {wind_mph[0].round(2)} MPH at {time} UTC")
|
196 |
+
st_folium(m, height=500)
|
197 |
+
|
198 |
+
|
199 |
+
if entire_day == 'Yes':
|
200 |
+
df_all = graph_entire_day(d, rows, columns)
|
201 |
+
fig = px.line(df_all, x="Time", y="MPH")
|
202 |
+
with col2:
|
203 |
+
st.title('Analysis')
|
204 |
+
st.plotly_chart(fig)
|
205 |
+
|
206 |
+
csv = convert_df(df_all)
|
207 |
+
|
208 |
+
st.download_button(
|
209 |
+
label="Download data as CSV",
|
210 |
+
data=csv,
|
211 |
+
file_name=f'{d}.csv',
|
212 |
+
mime='text/csv')
|
213 |
+
else:
|
214 |
+
pass
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
st.markdown(""" <style>
|
219 |
+
#MainMenu {visibility: hidden;}
|
220 |
+
footer {visibility: hidden;}
|
221 |
+
</style> """, unsafe_allow_html=True)
|
pages/Wind (Low Resolution): ERA.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Fri Oct 14 10:35:25 2022
|
4 |
+
|
5 |
+
@author: mritchey
|
6 |
+
"""
|
7 |
+
# streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\ERA\ERA2.py"
|
8 |
+
import datetime
|
9 |
+
import glob
|
10 |
+
import os
|
11 |
+
import branca.colormap as cm
|
12 |
+
import folium
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import plotly.express as px
|
16 |
+
import streamlit as st
|
17 |
+
from geopy.extra.rate_limiter import RateLimiter
|
18 |
+
from geopy.geocoders import Nominatim
|
19 |
+
from matplotlib import colors as colors
|
20 |
+
from streamlit_folium import st_folium
|
21 |
+
import rioxarray
|
22 |
+
import xarray as xr
|
23 |
+
import cdsapi
|
24 |
+
import os
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
def mapvalue2color(value, cmap):
|
29 |
+
if np.isnan(value):
|
30 |
+
return (1, 0, 0, 0)
|
31 |
+
else:
|
32 |
+
return colors.to_rgba(cmap(value), 0.7)
|
33 |
+
|
34 |
+
|
35 |
+
def geocode(address):
|
36 |
+
try:
|
37 |
+
address2 = address.replace(' ', '+').replace(',', '%2C')
|
38 |
+
df = pd.read_json(
|
39 |
+
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
|
40 |
+
results = df.iloc[:1, 0][0][0]['coordinates']
|
41 |
+
lat, lon = results['y'], results['x']
|
42 |
+
except:
|
43 |
+
geolocator = Nominatim(user_agent="GTA Lookup")
|
44 |
+
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
|
45 |
+
location = geolocator.geocode(address)
|
46 |
+
lat, lon = location.latitude, location.longitude
|
47 |
+
return lat, lon
|
48 |
+
|
49 |
+
|
50 |
+
def graph_within_date_range(d, number_days_range):
|
51 |
+
year, month, day = d[:4], d[4:6], d[6:8]
|
52 |
+
date = pd.Timestamp(d)
|
53 |
+
start_date, end_date = date - \
|
54 |
+
pd.Timedelta(days=number_days_range), date + \
|
55 |
+
pd.Timedelta(days=number_days_range+1)
|
56 |
+
start_date = start_date.strftime("%Y-%m-%d")
|
57 |
+
end_date = end_date.strftime("%Y-%m-%d")
|
58 |
+
url = f'https://archive-api.open-meteo.com/v1/archive?latitude={lat}&longitude={lon}&start_date={start_date}&end_date={end_date}&hourly=temperature_2m,precipitation,windspeed_10m,windgusts_10m&models=best_match&temperature_unit=fahrenheit&windspeed_unit=mph&precipitation_unit=inch'
|
59 |
+
df = pd.read_json(url).reset_index()
|
60 |
+
data = pd.DataFrame({c['index']: c['hourly'] for r, c in df.iterrows()})
|
61 |
+
data['time'] = pd.to_datetime(data['time'])
|
62 |
+
data['date'] = pd.to_datetime(data['time'].dt.date)
|
63 |
+
data = data.query("temperature_2m==temperature_2m")
|
64 |
+
|
65 |
+
data_agg = data.groupby(['date']).agg({'temperature_2m': ['min', 'mean', 'max'],
|
66 |
+
'precipitation': ['sum'],
|
67 |
+
'windspeed_10m': ['min', 'mean', 'max'],
|
68 |
+
'windgusts_10m': ['min', 'mean', 'max']
|
69 |
+
})
|
70 |
+
data_agg.columns = data_agg.columns.to_series().str.join('_')
|
71 |
+
data_agg = data_agg.query("temperature_2m_min==temperature_2m_min")
|
72 |
+
return data.drop(columns=['date']), data_agg
|
73 |
+
|
74 |
+
|
75 |
+
@st.cache(allow_output_mutation=True)
|
76 |
+
def get_era5_data(year, month, day):
|
77 |
+
c = cdsapi.Client(key=os.environ['key'],
|
78 |
+
url="https://cds.climate.copernicus.eu/api/v2")
|
79 |
+
|
80 |
+
c.retrieve(
|
81 |
+
'reanalysis-era5-single-levels',
|
82 |
+
{
|
83 |
+
'product_type': 'reanalysis',
|
84 |
+
'variable': ['10m_u_component_of_wind', '10m_v_component_of_wind',
|
85 |
+
'instantaneous_10m_wind_gust',
|
86 |
+
'2m_temperature', 'total_precipitation'],
|
87 |
+
'year': year,
|
88 |
+
'month': [month],
|
89 |
+
'day': [day],
|
90 |
+
'time': ['00:00', '06:00', '12:00', '18:00'],
|
91 |
+
'area': [49.5, -125, 24.5, -66.5, ],
|
92 |
+
'format': 'netcdf',
|
93 |
+
},
|
94 |
+
'data.nc')
|
95 |
+
|
96 |
+
|
97 |
+
@st.cache
|
98 |
+
def convert_df(df):
|
99 |
+
return df.to_csv(index=0).encode('utf-8')
|
100 |
+
|
101 |
+
|
102 |
+
try:
|
103 |
+
for i in glob.glob('*.grib2'):
|
104 |
+
os.remove(i)
|
105 |
+
except:
|
106 |
+
pass
|
107 |
+
|
108 |
+
st.set_page_config(layout="wide")
|
109 |
+
col1, col2 = st.columns((2))
|
110 |
+
|
111 |
+
address = st.sidebar.text_input(
|
112 |
+
"Address", "123 Main Street, Columbus, OH 43215")
|
113 |
+
date = st.sidebar.date_input(
|
114 |
+
"Date", pd.Timestamp(2022, 9, 28))
|
115 |
+
d = date.strftime('%Y%m%d')
|
116 |
+
date = date.strftime('%Y-%m-%d')
|
117 |
+
time = st.sidebar.selectbox('Time (UTC):', ('12 AM', '6 AM', '12 PM', '6 PM',))
|
118 |
+
type_var = st.sidebar.selectbox(
|
119 |
+
'Type:', ('Gust', 'Wind', 'Temp', 'Precipitation'))
|
120 |
+
number_days_range = st.sidebar.selectbox(
|
121 |
+
'Within Day Range:', (5, 10, 30, 90, 180))
|
122 |
+
hourly_daily = st.sidebar.radio('Aggregate Data', ('Hourly', 'Daily'))
|
123 |
+
|
124 |
+
# Keys
|
125 |
+
var_key = {'Gust': 'i10fg', 'Wind': 'wind10',
|
126 |
+
'Temp': 't2m', 'Precipitation': 'tp'}
|
127 |
+
|
128 |
+
variable = var_key[type_var]
|
129 |
+
|
130 |
+
unit_key = {'Gust': 'MPH', 'Wind': 'MPH',
|
131 |
+
'Temp': 'F', 'Precipitation': 'In.'}
|
132 |
+
unit = unit_key[type_var]
|
133 |
+
|
134 |
+
cols_key = {'Gust': ['windgusts_10m'], 'Wind': ['windspeed_10m'], 'Temp': ['temperature_2m'],
|
135 |
+
'Precipitation': ['precipitation']}
|
136 |
+
|
137 |
+
cols_key_agg = {'Gust': ['windgusts_10m_min', 'windgusts_10m_mean',
|
138 |
+
'windgusts_10m_max'],
|
139 |
+
'Wind': ['windspeed_10m_min', 'windspeed_10m_mean',
|
140 |
+
'windspeed_10m_max'],
|
141 |
+
'Temp': ['temperature_2m_min', 'temperature_2m_mean', 'temperature_2m_max'],
|
142 |
+
'Precipitation': ['precipitation_sum']}
|
143 |
+
|
144 |
+
if hourly_daily == 'Hourly':
|
145 |
+
cols = cols_key[type_var]
|
146 |
+
else:
|
147 |
+
cols = cols_key_agg[type_var]
|
148 |
+
|
149 |
+
|
150 |
+
if time[-2:] == 'PM' and int(time[:2].strip()) < 12:
|
151 |
+
t = datetime.time(int(time[:2].strip())+12, 00).strftime('%H')+'00'
|
152 |
+
elif time[-2:] == 'AM' and int(time[:2].strip()) == 12:
|
153 |
+
t = '00:00'
|
154 |
+
else:
|
155 |
+
t = datetime.time(int(time[:2].strip()), 00).strftime('%H')+'00'
|
156 |
+
|
157 |
+
year, month, day = d[:4], d[4:6], d[6:8]
|
158 |
+
|
159 |
+
get_era5_data(year, month, day)
|
160 |
+
ds = xr.open_dataset('data.nc')
|
161 |
+
ds = ds.sel(time=f'{date}T{t}').drop('time')
|
162 |
+
|
163 |
+
#Convert Units
|
164 |
+
ds = ds.assign(t2m=(ds.t2m - 273.15) * 9/5 + 32)
|
165 |
+
ds = ds.assign(i10fg=(ds.i10fg*2.237))
|
166 |
+
ds = ds.assign(tp=(ds.tp/24.5))
|
167 |
+
ds = ds.assign(wind10=((ds.v10**2+ds.u10**2)**.5)*2.237)
|
168 |
+
|
169 |
+
lat, lon = geocode(address)
|
170 |
+
|
171 |
+
var_value = ds[variable].sel(
|
172 |
+
longitude=lon, latitude=lat, method="nearest").values.item()
|
173 |
+
var_value = round(var_value, 1)
|
174 |
+
|
175 |
+
img = ds[variable].values
|
176 |
+
boundary = ds.rio.bounds()
|
177 |
+
left, bottom, right, top = boundary
|
178 |
+
|
179 |
+
img[img < 0.0] = np.nan
|
180 |
+
|
181 |
+
clat = (bottom + top)/2
|
182 |
+
clon = (left + right)/2
|
183 |
+
|
184 |
+
vmin = np.floor(np.nanmin(img))
|
185 |
+
vmax = np.ceil(np.nanmax(img))
|
186 |
+
|
187 |
+
colormap = cm.LinearColormap(
|
188 |
+
colors=['blue', 'lightblue', 'red'], vmin=vmin, vmax=vmax)
|
189 |
+
|
190 |
+
m = folium.Map(location=[lat, lon], zoom_start=5, height=500)
|
191 |
+
|
192 |
+
folium.Marker(
|
193 |
+
location=[lat, lon],
|
194 |
+
popup=f"{var_value} {unit}"
|
195 |
+
).add_to(m)
|
196 |
+
|
197 |
+
folium.raster_layers.ImageOverlay(
|
198 |
+
image=img,
|
199 |
+
name='Wind Speed Map',
|
200 |
+
opacity=.8,
|
201 |
+
bounds=[[bottom, left], [top, right]],
|
202 |
+
colormap=lambda value: mapvalue2color(value, colormap)
|
203 |
+
).add_to(m)
|
204 |
+
|
205 |
+
|
206 |
+
folium.LayerControl().add_to(m)
|
207 |
+
colormap.caption = 'Wind Speed: MPH'
|
208 |
+
m.add_child(colormap)
|
209 |
+
|
210 |
+
with col1:
|
211 |
+
st.title('ERA5 Model')
|
212 |
+
# st.write(
|
213 |
+
# f"{type_wind.title()} Speed: {wind_mph[0].round(2)} MPH at {time} UTC")
|
214 |
+
st_folium(m, height=500)
|
215 |
+
df_all, df_all_agg = graph_within_date_range(d, number_days_range)
|
216 |
+
|
217 |
+
if hourly_daily == 'Hourly':
|
218 |
+
fig = px.line(df_all, x="time", y=cols)
|
219 |
+
df_downloald = df_all
|
220 |
+
else:
|
221 |
+
fig = px.line(df_all_agg.reset_index(), x="date", y=cols)
|
222 |
+
df_downloald = df_all_agg.reset_index()
|
223 |
+
|
224 |
+
with col2:
|
225 |
+
st.title('Analysis')
|
226 |
+
st.plotly_chart(fig)
|
227 |
+
|
228 |
+
csv = convert_df(df_downloald)
|
229 |
+
|
230 |
+
st.download_button(
|
231 |
+
label="Download data as CSV",
|
232 |
+
data=csv,
|
233 |
+
file_name=f'{d}.csv',
|
234 |
+
mime='text/csv')
|
235 |
+
|
236 |
+
|
237 |
+
st.markdown(""" <style>
|
238 |
+
#MainMenu {visibility: hidden;}
|
239 |
+
footer {visibility: hidden;}
|
240 |
+
</style> """, unsafe_allow_html=True)
|
pages/hail scale.csv
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
c_code,occurence,RGB,R,G,B,Hail Scale,Hail Scale In,R+G
|
2 |
+
#01A0F6,408,"(1, 160, 246)",1,160,246,2,0.08,78546
|
3 |
+
#BE55DC,408,"(190, 85, 220)",190,85,220,100,3.94,3545724
|
4 |
+
#FF9000,408,"(255, 144, 0)",255,144,0,30,1.18,36608
|
5 |
+
#00C800,408,"(0, 200, 0)",0,200,0,8,0.31,199
|
6 |
+
#FF00FF,396,"(255, 0, 255)",255,0,255,75,2.95,-65536
|
7 |
+
#C00000,396,"(192, 0, 0)",192,0,0,50,1.97,-193
|
8 |
+
#FF0000,396,"(255, 0, 0)",255,0,0,40,1.57,-256
|
9 |
+
#E7C000,396,"(231, 192, 0)",231,192,0,20,0.79,44312
|
10 |
+
#FFFF00,396,"(255, 255, 0)",255,255,0,15,0.59,65024
|
11 |
+
#009000,396,"(0, 144, 0)",0,144,0,10,0.39,143
|
12 |
+
#00FF00,396,"(0, 255, 0)",0,255,0,6,0.24,254
|
13 |
+
#0000F6,396,"(0, 0, 246)",0,0,246,4,0.16,-247
|
14 |
+
#00ECEC,336,"(0, 236, 236)",0,236,236,1,0.04,55695
|
15 |
+
#7E32A7,60,"(126, 50, 167)",126,50,167,200,7.87,1045464
|
16 |
+
#7F7F7F,,"(127, 127, 127)",127,127,127,0,0,2064384
|
pages/hail scale3b.png
ADDED
![]() |
pages/readme.rd
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
folium==0.12.1
|
2 |
+
geopandas==0.10.2
|
3 |
+
geopy==2.2.0
|
4 |
+
joblib==1.1.0
|
5 |
+
numpy==1.21.5
|
6 |
+
pandas==1.4.2
|
7 |
+
Pillow==9.4.0
|
8 |
+
plotly==5.7.0
|
9 |
+
rasterio==1.2.10
|
10 |
+
requests==2.27.1
|
11 |
+
rioxarray==0.12.2
|
12 |
+
scikit_image==0.19.2
|
13 |
+
streamlit==1.4.0
|
14 |
+
streamlit_folium==0.6.15
|
15 |
+
streamlit_plotly_events==0.0.6
|
16 |
+
branca==0.4.2
|
17 |
+
matplotlib==3.6.2
|
18 |
+
scikit_image==0.19.2
|
19 |
+
xarray[complete]
|
20 |
+
cdsapi
|