Spaces:
Sleeping
Sleeping
File size: 7,247 Bytes
be35e17 fb64c7d be35e17 fb64c7d be35e17 349b46e fb64c7d be35e17 fb64c7d be35e17 fb64c7d be35e17 349b46e fb64c7d be35e17 fb64c7d be35e17 fb64c7d be35e17 fb64c7d be35e17 fb64c7d be35e17 349b46e be35e17 349b46e fb64c7d be35e17 fb64c7d be35e17 fb64c7d be35e17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import pandas as pd
import numpy as np
import streamlit as st
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
import folium
from streamlit_folium import st_folium
import geopandas as gpd
from vincenty import vincenty
from shapely import wkb
import duckdb
st.set_page_config(layout="wide")
@st.cache_data
def get_perimeters(start_date_str,end_date_str):
gdf_perimeters = gpd.read_file(
'https://opendata.arcgis.com/api/v3/datasets/5e72b1699bf74eefb3f3aff6f4ba5511_0/downloads/data?format=shp&spatialRefId=4326&where=1%3D1')
gdf_perimeters = gdf_perimeters[['OBJECTID', 'poly_Incid', 'attr_Fir_7', 'poly_Creat',
'poly_DateC', 'poly_Polyg', 'poly_Acres', 'attr_Estim', 'geometry']].copy()
gdf_perimeters.columns = ['OBJECTID', 'Incident', 'DiscoveryDate', 'poly_Creat',
'LastUpdate', 'poly_Polyg', 'Size_acres', 'CurrentEstCost', 'geometry']
gdf_perimeters['Lat_centroid'] = gdf_perimeters.centroid.y
gdf_perimeters['Lon_centroid'] = gdf_perimeters.centroid.x
gdf_perimeters['DiscoveryDate'] = pd.to_datetime(
gdf_perimeters['DiscoveryDate'])
gdf_cut = gdf_perimeters.query(f"'{start_date_str}'<=DiscoveryDate<='{end_date_str}'")
gdf_cut['DiscoveryDate'] = gdf_cut['DiscoveryDate'].dt.strftime('%Y-%m-%d')
return gdf_cut
@st.cache_data
def get_perimeters_fast(start_date_str,end_date_str):
code = f"""
select * from 'wildfire_perimeters.parquet'
where DiscoveryDate>= '{start_date_str}' and DiscoveryDate<= '{end_date_str}'
"""
gdf_cut = duck_sql(code)
gdf_cut['geometry'] = [wkb.loads(bytes(i)) for i in gdf_cut.geometry]
gdf_cut = gpd.GeoDataFrame(gdf_cut)
gdf_cut['DiscoveryDate'] = gdf_cut['DiscoveryDate'].dt.strftime('%Y-%m-%d')
return gdf_cut
def map_perimeters(_gdf_data, address):
geojson_data = _gdf_data[['OBJECTID', 'Incident', 'DiscoveryDate',
'Miles to Fire Centroid', 'geometry']].to_json()
m = folium.Map(location=[lat, lon],
zoom_start=6,
height=500)
folium.Marker(
location=[lat, lon],
tooltip=f'Address: {address}',
).add_to(m)
folium.GeoJson(geojson_data,
tooltip=folium.GeoJsonTooltip(fields=["Incident",
"DiscoveryDate",
'Miles to Fire Centroid']),
).add_to(m)
return m
def distance(x):
left_coords = (x[0], x[1])
right_coords = (x[2], x[3])
return vincenty(left_coords, right_coords, miles=True)
def geocode(address):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent="GTA Lookup")
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
return lat, lon
def extract_vertices(_gdf):
g = [i for i in _gdf.geometry]
all_data = []
for i in range(len(g)):
try:
try:
x, y = g[i].exterior.coords.xy
except:
x, y = g[i].coords.xy
df = pd.DataFrame({'Lat': y, 'Lon': x})
except:
all_data2 = []
try:
for j in range(len(g[i])):
try:
x, y = g[i][j].exterior.coords.xy
except:
x, y = g[i][j].coords.xy
all_data2.append(pd.DataFrame({'Lat': y, 'Lon': x}))
df = pd.concat(all_data2)
except:
for i in g.geometry:
x = np.concatenate([poly.exterior.coords.xy[0]
for poly in i.geoms])
y = np.concatenate([poly.exterior.coords.xy[1]
for poly in i.geoms])
df = pd.DataFrame({'Lat': y,
'Lon': x, })
all_data.append(df)
return pd.concat(all_data).query('Lat==Lat').reset_index(drop=1)
def duck_sql(sql_code):
con = duckdb.connect()
con.execute("PRAGMA threads=2")
con.execute("PRAGMA enable_object_cache")
return con.execute(sql_code).df()
#Side Bar
address = st.sidebar.text_input(
"Address", "Sacramento, CA")
date = st.sidebar.date_input("Date", pd.Timestamp(2021, 7, 14), key='date')
number_days_range = st.sidebar.selectbox(
'Within Day Range:', (5, 10, 30, 90, 180))
refresh = st.sidebar.radio(
'Refresh Data (as of 6/7/23): Will Take Time ', (False, True))
miles_range = st.sidebar.selectbox(
'Find Fires within Range (Miles):', (None, 50, 100, 250, 500))
size = st.sidebar.radio(
'Greater than 100 Acres', ("Yes", "No"))
#Geocode Addreses
lat, lon = geocode(address)
# Filter Data
start_date, end_date = date - \
pd.Timedelta(days=number_days_range), date + \
pd.Timedelta(days=number_days_range+1)
start_date_str, end_date_str = start_date.strftime(
'%Y-%m-%d'), end_date.strftime('%Y-%m-%d')
# Get Data: Modified for Speed
if refresh:
gdf = get_perimeters(start_date_str,end_date_str,refresh)
else:
gdf_cut = get_perimeters_fast(start_date_str,end_date_str)
#Distance to Fire
gdf_cut["Lat_address"] = lat
gdf_cut["Lon_address"] = lon
gdf_cut['Miles to Fire Centroid'] = [
distance(i) for i in gdf_cut[gdf_cut.columns[-4:]].values]
gdf_cut['Miles to Fire Centroid'] = gdf_cut['Miles to Fire Centroid'].round(2)
if miles_range is not None:
gdf_cut = gdf_cut.query(f"`Miles to Fire Centroid`<={miles_range}")
if size == 'Yes':
gdf_cut = gdf_cut.query("Size_acres>100")
gdf_cut = gdf_cut.sort_values('Miles to Fire Centroid').reset_index(drop=1)
gdf_cut.index = gdf_cut.index+1
#Map Data
m = map_perimeters(gdf_cut, address)
#Incident Edge
indicents = list(gdf_cut['Incident'].values)
incident_edge = st.sidebar.selectbox(
'Find Distance to Closest Edge:', indicents)
vertices = extract_vertices(gdf_cut.query(f"Incident=='{incident_edge}'"))
vertices["Lat_address"] = lat
vertices["Lon_address"] = lon
vertices['Distance'] = [
distance(i) for i in vertices.values]
closest_edge = vertices[vertices['Distance']
== vertices['Distance'].min()].head(1)
lon_point, lat_point = closest_edge[['Lon', 'Lat']].values[0]
distance_edge = closest_edge['Distance'].round(2).values[0]
folium.PolyLine([[lat, lon],
[lat_point, lon_point]],
color='black',
tooltip=f'Distance: {distance_edge} Miles'
).add_to(m)
#Display
col1, col2 = st.columns((2, 3))
with col1:
st.header('Fire Perimeters')
st_folium(m, height=600)
with col2:
st.header('Fires')
gdf_cut[['Incident', 'DiscoveryDate', 'Size_acres', 'Miles to Fire Centroid']]
|