File size: 8,484 Bytes
095ea7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

import os
import json
import traceback

import sys
from pathlib import Path

cerebrum_path = Path.home() / "repos" / "terra" / "src" / "cerebrum"
sys.path.insert(0, str(cerebrum_path))


REMOTE = os.getenv("HF_SPACE") == "true"
CEREBRUM_AVAILABLE = False

try:
    from aios.llm.apis import llm_chat, llm_call_tool, llm_chat_with_json_output
    from aios.interface import AutoTool
    from aios.config.config_manager import config as aios_config
    CEREBRUM_AVAILABLE = True
    print("✅ Loaded aios-agent-sdk (Cerebrum) successfully.")
except ImportError:
    print("⚠️ cerebrum (aios-agent-sdk) not found. Falling back to mock mode.")
    def llm_chat(*args, **kwargs):
        return {"response": {"response_message": "[MOCK] Chat reply"}}
    def llm_call_tool(*args, **kwargs):
        return {"response": {"response_message": "[MOCK] Tool reply"}}
    def llm_chat_with_json_output(*args, **kwargs):
        return {"response": {"response_message": '[{"action_type": "chat", "action": "Mock Plan", "tool_use": []}]'}}
    # class AutoTool:
    #     @staticmethod
    #     def from_batch_preloaded(tools):
    #         return []
        



from cerebrum.llm.apis import llm_chat, llm_call_tool, llm_chat_with_json_output
from cerebrum.interface import AutoTool
import os
import json

def get_config():
    from cerebrum.config.config_manager import config
    return config
config = get_config()
 


aios_kernel_url = config.get_kernel_url()

class DemoAgent:
    def __init__(self, agent_name):
        self.agent_name = agent_name
        self.config = self.load_config()
        self.tools = [
            tool.get_tool_call_format()
            for tool in AutoTool.from_batch_preloaded(self.config["tools"])
        ]

        self.plan_max_fail_times = 3
        self.tool_call_max_fail_times = 3

        self.start_time = None
        self.end_time = None
        self.request_waiting_times: list = []
        self.request_turnaround_times: list = []
        self.messages = []
        self.workflow_mode = "manual"  # (manual, automatic)
        self.rounds = 0

    def load_config(self):
        script_path = os.path.abspath(__file__)
        script_dir = os.path.dirname(script_path)
        config_file = os.path.join(script_dir, "config.json")

        with open(config_file, "r") as f:
            config = json.load(f)
        return config
    
    def pre_select_tools(self, tool_names):
        pre_selected_tools = []
        for tool_name in tool_names:
            for tool in self.tools:
                if tool["function"]["name"] == tool_name:
                    pre_selected_tools.append(tool)
                    break
        return pre_selected_tools
    
    def build_system_instruction(self):
        prefix = "".join(["".join(self.config["description"])])

        plan_instruction = "".join(
            [
                f"You are given the available tools from the tool list: {json.dumps(self.tools)} to help you solve problems. ",
                "Generate a plan with comprehensive yet minimal steps to fulfill the task. ",
                "The plan must follow the json format as below: ",
                "[",
                '{"action_type": "action_type_value", "action": "action_value","tool_use": [tool_name1, tool_name2,...]}',
                '{"action_type": "action_type_value", "action": "action_value", "tool_use": [tool_name1, tool_name2,...]}',
                "...",
                "]",
                "In each step of the planned plan, identify tools to use and recognize no tool is necessary. ",
                "Followings are some plan examples. ",
                "[" "[",
                '{"action_type": "tool_use", "action": "gather information from arxiv. ", "tool_use": ["arxiv"]},',
                '{"action_type": "chat", "action": "write a summarization based on the gathered information. ", "tool_use": []}',
                "];",
                "[",
                '{"action_type": "tool_use", "action": "gather information from arxiv. ", "tool_use": ["arxiv"]},',
                '{"action_type": "chat", "action": "understand the current methods and propose ideas that can improve ", "tool_use": []}',
                "]",
                "]",
            ]
        )

        if self.workflow_mode == "manual":
            self.messages.append({"role": "system", "content": prefix})

        else:
            assert self.workflow_mode == "automatic"
            self.messages.append({"role": "system", "content": prefix})
            self.messages.append({"role": "user", "content": plan_instruction})

    def automatic_workflow(self):
        for i in range(self.plan_max_fail_times):
            response = llm_chat_with_json_output(
                messages=self.messages,
                message_return_type="json"
            )["response"]["response_message"]

            try:
                workflow = json.loads(response)
            except:
                workflow = None

            self.rounds += 1

            if workflow:
                return workflow

            else:
                self.messages.append(
                    {
                        "role": "assistant",
                        "content": f"Fail {i+1} times to generate a valid plan. I need to regenerate a plan",
                    }
                )
        return None

    def manual_workflow(self):
        workflow = [
            {
                "action_type": "call_tool",
                "action": "Search for relevant papers",
                "tool_use": ["demo_author/arxiv"],
            },
            {
                "action_type": "chat",
                "action": "Provide responses based on the user's query",
                "tool_use": [],
            },
        ]
        return workflow

    def run(self, task_input):
        self.build_system_instruction()

        self.messages.append({"role": "user", "content": task_input})

        workflow = None

        if self.workflow_mode == "automatic":
            workflow = self.automatic_workflow()
            self.messages = self.messages[:1]  # clear long context

        else:
            assert self.workflow_mode == "manual"
            workflow = self.manual_workflow()

        self.messages.append(
            {
                "role": "user",
                "content": f"[Thinking]: The workflow generated for the problem is {json.dumps(workflow)}. Follow the workflow to solve the problem step by step. ",
            }
        )

        try:
            if workflow:
                final_result = ""

                for i, step in enumerate(workflow):
                    action_type = step["action_type"]
                    action = step["action"]
                    tool_use = step["tool_use"]

                    prompt = f"At step {i + 1}, you need to: {action}. "
                    self.messages.append({"role": "user", "content": prompt})

                    if tool_use:
                        selected_tools = self.pre_select_tools(tool_use)

                    else:
                        selected_tools = None

                    if action_type == "call_tool":
                        response = llm_call_tool(
                            agent_name=self.agent_name,
                            messages=self.messages,
                            tools=selected_tools,
                            base_url=aios_kernel_url
                        )["response"]
                    else:
                        response = llm_chat(
                            agent_name=self.agent_name,
                            messages=self.messages,
                            base_url=aios_kernel_url
                        )["response"]
                        
                    self.messages.append({"role": "assistant", "content": response["response_message"]})

                    self.rounds += 1


                final_result = self.messages[-1]["content"]
                
                return {
                    "agent_name": self.agent_name,
                    "result": final_result,
                    "rounds": self.rounds,
                }

            else:   
                return {
                    "agent_name": self.agent_name,
                    "result": "Failed to generate a valid workflow in the given times.",
                    "rounds": self.rounds,

                }
                
        except Exception as e:

            return {}