import csv import os from datetime import datetime from typing import Optional, Union import gradio as gr from huggingface_hub import HfApi, Repository from onnx_export import convert from apscheduler.schedulers.background import BackgroundScheduler DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/exporters" DATA_FILENAME = "data.csv" DATA_FILE = os.path.join("data", DATA_FILENAME) HF_TOKEN = os.environ.get("HF_WRITE_TOKEN") DATADIR = "exporters_data" repo: Optional[Repository] = None # if HF_TOKEN: # repo = Repository(local_dir=DATADIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN) def onnx_export(token: str, model_id: str, task: str, opset: Union[int, str]) -> str: if token == "" or model_id == "": return """ ### Invalid input 🐞 Please fill a token and model name. """ try: if opset == "": opset = None else: opset = int(opset) api = HfApi(token=token) error, commit_info = convert(api=api, model_id=model_id, task=task, opset=opset) if error != "0": return error print("[commit_info]", commit_info) # save in a private dataset if repo is not None: repo.git_pull(rebase=True) with open(os.path.join(DATADIR, DATA_FILE), "a") as csvfile: writer = csv.DictWriter( csvfile, fieldnames=["model_id", "pr_url", "time"] ) writer.writerow( { "model_id": model_id, "pr_url": commit_info.pr_url, "time": str(datetime.now()), } ) commit_url = repo.push_to_hub() print("[dataset]", commit_url) pr_revision = commit_info.pr_revision.replace("/", "%2F") return f"#### This model was successfully exported and a PR was open using your token, here: [{commit_info.pr_url}]({commit_info.pr_url}). If you would like to use the exported model without waiting for the PR to be approved, head to https://huggingface.co/{model_id}/tree/{pr_revision}" except Exception as e: return f"#### Error: {e}" TTILE_IMAGE = """
""" TITLE = """

Export transformers model to ONNX with HF Optimum exporters.

""" # for some reason https://huggingface.co/settings/tokens is not showing as a link by default? DESCRIPTION = """ This Space enables automatic export of Hugging Face transformers PyTorch models to [ONNX](https://onnx.ai/). It creates a pull request on the target model repository, allowing model owners to review and merge the ONNX export, making their models accessible across a wide range of devices and platforms. Once exported, the model can be seamlessly integrated with [HF Optimum](https://huggingface.co/docs/optimum/), maintaining compatibility with the transformers API. For detailed implementation, check out [this comprehensive guide](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models). Quick Start Guide: 1. Obtain a read-access token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens) (read access is sufficient for PR creation) 2. Enter a model ID from the Hub (e.g., [textattack/distilbert-base-cased-CoLA](https://huggingface.co/textattack/distilbert-base-cased-CoLA)) 3. Click "Export to ONNX" 4. Done! You'll receive feedback on the export status and, if successful, the URL of the created pull request Important Note: For models exceeding 2 GB, the ONNX export will be saved in an `onnx/` subfolder. When loading such models with Optimum, remember to include the `subfolder="onnx"` parameter.""" with gr.Blocks() as demo: gr.HTML(TTILE_IMAGE) gr.HTML(TITLE) with gr.Row(): with gr.Column(scale=50): gr.Markdown(DESCRIPTION) with gr.Column(scale=50): input_token = gr.Textbox( max_lines=1, label="Hugging Face token", ) input_model = gr.Textbox( max_lines=1, label="Model name", placeholder="textattack/distilbert-base-cased-CoLA", ) input_task = gr.Textbox( value="auto", max_lines=1, label='Task (can be left to "auto", will be automatically inferred)', ) onnx_opset = gr.Textbox( placeholder="for example 14, can be left blank", max_lines=1, label="ONNX opset (optional, can be left blank)", ) btn = gr.Button("Export to ONNX") output = gr.Markdown(label="Output") btn.click( fn=onnx_export, inputs=[input_token, input_model, input_task, onnx_opset], outputs=output, ) def restart_space(): HfApi().restart_space(repo_id="onnx/export", token=HF_TOKEN, factory_reboot=True) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=21600) scheduler.start() demo.launch()