mawady commited on
Commit
46c3a5a
·
1 Parent(s): fc84b02
Files changed (1) hide show
  1. app.py +29 -28
app.py CHANGED
@@ -21,15 +21,15 @@ import torch
21
  from mmocr.apis import MMOCRInferencer
22
  ocr = MMOCRInferencer(det='TextSnake', rec='ABINet_Vision')
23
 
24
- # url = (
25
- # "https://upload.wikimedia.org/wikipedia/commons/3/38/Adorable-animal-cat-20787.jpg"
26
- # )
27
- # path_input = "./cat.jpg"
28
- # urllib.request.urlretrieve(url, filename=path_input)
29
 
30
- # url = "https://upload.wikimedia.org/wikipedia/commons/4/43/Cute_dog.jpg"
31
- # path_input = "./dog.jpg"
32
- # urllib.request.urlretrieve(url, filename=path_input)
33
 
34
  # model = keras_model(weights="imagenet")
35
 
@@ -41,7 +41,8 @@ ocr = MMOCRInferencer(det='TextSnake', rec='ABINet_Vision')
41
  # )
42
 
43
 
44
- # def do_process(img, baseline):
 
45
  # instance = image.img_to_array(img)
46
  # instance = np.expand_dims(instance, axis=0)
47
  # instance = preprocess_input(instance)
@@ -85,9 +86,9 @@ ocr = MMOCRInferencer(det='TextSnake', rec='ABINet_Vision')
85
  # return img_res, img_flt, dctPreds
86
 
87
 
88
- # input_im = gr.inputs.Image(
89
- # shape=(224, 224), image_mode="RGB", invert_colors=False, source="upload", type="pil"
90
- # )
91
  # input_drop = gr.inputs.Dropdown(
92
  # label="Baseline (default: random)",
93
  # choices=["random", "black", "white", "blur"],
@@ -95,24 +96,24 @@ ocr = MMOCRInferencer(det='TextSnake', rec='ABINet_Vision')
95
  # type="value",
96
  # )
97
 
98
- # output_img = gr.outputs.Image(label="Output of Integrated Gradients", type="pil")
99
  # output_base = gr.outputs.Image(label="Baseline image", type="pil")
100
  # output_label = gr.outputs.Label(label="Classification results", num_top_classes=3)
101
 
102
- # title = "XAI - Integrated gradients"
103
- # description = "Playground: Integrated gradients for a ResNet model trained on Imagenet dataset. Tools: Alibi, TF, Gradio."
104
- # examples = [["./cat.jpg", "blur"], ["./dog.jpg", "random"]]
105
- # article = "<p style='text-align: center'><a href='https://github.com/mawady' target='_blank'>By Dr. Mohamed Elawady</a></p>"
106
- # iface = gr.Interface(
107
- # fn=do_process,
108
- # inputs=[input_im, input_drop],
109
- # outputs=[output_img, output_base, output_label],
110
- # live=False,
111
- # interpretation=None,
112
- # title=title,
113
- # description=description,
114
- # article=article,
115
- # examples=examples,
116
- # )
117
 
118
  # iface.launch(debug=True)
 
21
  from mmocr.apis import MMOCRInferencer
22
  ocr = MMOCRInferencer(det='TextSnake', rec='ABINet_Vision')
23
 
24
+ url = (
25
+ "https://upload.wikimedia.org/wikipedia/commons/3/38/Adorable-animal-cat-20787.jpg"
26
+ )
27
+ path_input = "./cat.jpg"
28
+ urllib.request.urlretrieve(url, filename=path_input)
29
 
30
+ url = "https://upload.wikimedia.org/wikipedia/commons/4/43/Cute_dog.jpg"
31
+ path_input = "./dog.jpg"
32
+ urllib.request.urlretrieve(url, filename=path_input)
33
 
34
  # model = keras_model(weights="imagenet")
35
 
 
41
  # )
42
 
43
 
44
+ def do_process(img, baseline):
45
+ return img
46
  # instance = image.img_to_array(img)
47
  # instance = np.expand_dims(instance, axis=0)
48
  # instance = preprocess_input(instance)
 
86
  # return img_res, img_flt, dctPreds
87
 
88
 
89
+ input_im = gr.inputs.Image(
90
+ shape=(224, 224), image_mode="RGB", invert_colors=False, source="upload", type="pil"
91
+ )
92
  # input_drop = gr.inputs.Dropdown(
93
  # label="Baseline (default: random)",
94
  # choices=["random", "black", "white", "blur"],
 
96
  # type="value",
97
  # )
98
 
99
+ output_img = gr.outputs.Image(label="Output of Integrated Gradients", type="pil")
100
  # output_base = gr.outputs.Image(label="Baseline image", type="pil")
101
  # output_label = gr.outputs.Label(label="Classification results", num_top_classes=3)
102
 
103
+ title = "XAI - Integrated gradients"
104
+ description = "Playground: Integrated gradients for a ResNet model trained on Imagenet dataset. Tools: Alibi, TF, Gradio."
105
+ examples = [["./cat.jpg", "blur"], ["./dog.jpg", "random"]]
106
+ article = "<p style='text-align: center'><a href='https://github.com/mawady' target='_blank'>By Dr. Mohamed Elawady</a></p>"
107
+ iface = gr.Interface(
108
+ fn=do_process,
109
+ inputs=[input_im],
110
+ outputs=[output_img],
111
+ live=False,
112
+ interpretation=None,
113
+ title=title,
114
+ description=description,
115
+ article=article,
116
+ examples=examples,
117
+ )
118
 
119
  # iface.launch(debug=True)