Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	test
Browse files- app.py +116 -0
 - requirements.txt +4 -0
 
    	
        app.py
    ADDED
    
    | 
         @@ -0,0 +1,116 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import matplotlib.pyplot as plt
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
            from PIL import Image, ImageFilter
         
     | 
| 4 | 
         
            +
            import io
         
     | 
| 5 | 
         
            +
            import time
         
     | 
| 6 | 
         
            +
            import os
         
     | 
| 7 | 
         
            +
            import copy
         
     | 
| 8 | 
         
            +
            import pickle
         
     | 
| 9 | 
         
            +
            import datetime
         
     | 
| 10 | 
         
            +
            import urllib.request
         
     | 
| 11 | 
         
            +
            import gradio as gr
         
     | 
| 12 | 
         
            +
            # from mim import install
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            # install('mmcv-full')
         
     | 
| 17 | 
         
            +
            # install('mmengine')
         
     | 
| 18 | 
         
            +
            # install('mmdet')
         
     | 
| 19 | 
         
            +
            from mmocr.apis import MMOCRInferencer
         
     | 
| 20 | 
         
            +
            ocr = MMOCRInferencer(det='TextSnake', rec='ABINet_Vision')
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            # url = (
         
     | 
| 23 | 
         
            +
            #     "https://upload.wikimedia.org/wikipedia/commons/3/38/Adorable-animal-cat-20787.jpg"
         
     | 
| 24 | 
         
            +
            # )
         
     | 
| 25 | 
         
            +
            # path_input = "./cat.jpg"
         
     | 
| 26 | 
         
            +
            # urllib.request.urlretrieve(url, filename=path_input)
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            # url = "https://upload.wikimedia.org/wikipedia/commons/4/43/Cute_dog.jpg"
         
     | 
| 29 | 
         
            +
            # path_input = "./dog.jpg"
         
     | 
| 30 | 
         
            +
            # urllib.request.urlretrieve(url, filename=path_input)
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            # model = keras_model(weights="imagenet")
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            # n_steps = 50
         
     | 
| 35 | 
         
            +
            # method = "gausslegendre"
         
     | 
| 36 | 
         
            +
            # internal_batch_size = 50
         
     | 
| 37 | 
         
            +
            # ig = IntegratedGradients(
         
     | 
| 38 | 
         
            +
            #     model, n_steps=n_steps, method=method, internal_batch_size=internal_batch_size
         
     | 
| 39 | 
         
            +
            # )
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            # def do_process(img, baseline):
         
     | 
| 43 | 
         
            +
            #     instance = image.img_to_array(img)
         
     | 
| 44 | 
         
            +
            #     instance = np.expand_dims(instance, axis=0)
         
     | 
| 45 | 
         
            +
            #     instance = preprocess_input(instance)
         
     | 
| 46 | 
         
            +
            #     preds = model.predict(instance)
         
     | 
| 47 | 
         
            +
            #     lstPreds = decode_predictions(preds, top=3)[0]
         
     | 
| 48 | 
         
            +
            #     dctPreds = {
         
     | 
| 49 | 
         
            +
            #         lstPreds[i][1]: round(float(lstPreds[i][2]), 2) for i in range(len(lstPreds))
         
     | 
| 50 | 
         
            +
            #     }
         
     | 
| 51 | 
         
            +
            #     predictions = preds.argmax(axis=1)
         
     | 
| 52 | 
         
            +
            #     if baseline == "white":
         
     | 
| 53 | 
         
            +
            #         baselines = bls = np.ones(instance.shape).astype(instance.dtype)
         
     | 
| 54 | 
         
            +
            #         img_flt = Image.fromarray(np.uint8(np.squeeze(baselines) * 255))
         
     | 
| 55 | 
         
            +
            #     elif baseline == "black":
         
     | 
| 56 | 
         
            +
            #         baselines = bls = np.zeros(instance.shape).astype(instance.dtype)
         
     | 
| 57 | 
         
            +
            #         img_flt = Image.fromarray(np.uint8(np.squeeze(baselines) * 255))
         
     | 
| 58 | 
         
            +
            #     elif baseline == "blur":
         
     | 
| 59 | 
         
            +
            #         img_flt = img.filter(ImageFilter.GaussianBlur(5))
         
     | 
| 60 | 
         
            +
            #         baselines = image.img_to_array(img_flt)
         
     | 
| 61 | 
         
            +
            #         baselines = np.expand_dims(baselines, axis=0)
         
     | 
| 62 | 
         
            +
            #         baselines = preprocess_input(baselines)
         
     | 
| 63 | 
         
            +
            #     else:
         
     | 
| 64 | 
         
            +
            #         baselines = np.random.random_sample(instance.shape).astype(instance.dtype)
         
     | 
| 65 | 
         
            +
            #         img_flt = Image.fromarray(np.uint8(np.squeeze(baselines) * 255))
         
     | 
| 66 | 
         
            +
            #     explanation = ig.explain(instance, baselines=baselines, target=predictions)
         
     | 
| 67 | 
         
            +
            #     attrs = explanation.attributions[0]
         
     | 
| 68 | 
         
            +
            #     fig, ax = visualize_image_attr(
         
     | 
| 69 | 
         
            +
            #         attr=attrs.squeeze(),
         
     | 
| 70 | 
         
            +
            #         original_image=img,
         
     | 
| 71 | 
         
            +
            #         method="blended_heat_map",
         
     | 
| 72 | 
         
            +
            #         sign="all",
         
     | 
| 73 | 
         
            +
            #         show_colorbar=True,
         
     | 
| 74 | 
         
            +
            #         title=baseline,
         
     | 
| 75 | 
         
            +
            #         plt_fig_axis=None,
         
     | 
| 76 | 
         
            +
            #         use_pyplot=False,
         
     | 
| 77 | 
         
            +
            #     )
         
     | 
| 78 | 
         
            +
            #     fig.tight_layout()
         
     | 
| 79 | 
         
            +
            #     buf = io.BytesIO()
         
     | 
| 80 | 
         
            +
            #     fig.savefig(buf)
         
     | 
| 81 | 
         
            +
            #     buf.seek(0)
         
     | 
| 82 | 
         
            +
            #     img_res = Image.open(buf)
         
     | 
| 83 | 
         
            +
            #     return img_res, img_flt, dctPreds
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
            # input_im = gr.inputs.Image(
         
     | 
| 87 | 
         
            +
            #     shape=(224, 224), image_mode="RGB", invert_colors=False, source="upload", type="pil"
         
     | 
| 88 | 
         
            +
            # )
         
     | 
| 89 | 
         
            +
            # input_drop = gr.inputs.Dropdown(
         
     | 
| 90 | 
         
            +
            #     label="Baseline (default: random)",
         
     | 
| 91 | 
         
            +
            #     choices=["random", "black", "white", "blur"],
         
     | 
| 92 | 
         
            +
            #     default="random",
         
     | 
| 93 | 
         
            +
            #     type="value",
         
     | 
| 94 | 
         
            +
            # )
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
            # output_img = gr.outputs.Image(label="Output of Integrated Gradients", type="pil")
         
     | 
| 97 | 
         
            +
            # output_base = gr.outputs.Image(label="Baseline image", type="pil")
         
     | 
| 98 | 
         
            +
            # output_label = gr.outputs.Label(label="Classification results", num_top_classes=3)
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
            # title = "XAI - Integrated gradients"
         
     | 
| 101 | 
         
            +
            # description = "Playground: Integrated gradients for a ResNet model trained on Imagenet dataset. Tools: Alibi, TF, Gradio."
         
     | 
| 102 | 
         
            +
            # examples = [["./cat.jpg", "blur"], ["./dog.jpg", "random"]]
         
     | 
| 103 | 
         
            +
            # article = "<p style='text-align: center'><a href='https://github.com/mawady' target='_blank'>By Dr. Mohamed Elawady</a></p>"
         
     | 
| 104 | 
         
            +
            # iface = gr.Interface(
         
     | 
| 105 | 
         
            +
            #     fn=do_process,
         
     | 
| 106 | 
         
            +
            #     inputs=[input_im, input_drop],
         
     | 
| 107 | 
         
            +
            #     outputs=[output_img, output_base, output_label],
         
     | 
| 108 | 
         
            +
            #     live=False,
         
     | 
| 109 | 
         
            +
            #     interpretation=None,
         
     | 
| 110 | 
         
            +
            #     title=title,
         
     | 
| 111 | 
         
            +
            #     description=description,
         
     | 
| 112 | 
         
            +
            #     article=article,
         
     | 
| 113 | 
         
            +
            #     examples=examples,
         
     | 
| 114 | 
         
            +
            # )
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
            # iface.launch(debug=True)
         
     | 
    	
        requirements.txt
    ADDED
    
    | 
         @@ -0,0 +1,4 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            pillow
         
     | 
| 2 | 
         
            +
            mmcv>=2.0.0rc1
         
     | 
| 3 | 
         
            +
            mmdet
         
     | 
| 4 | 
         
            +
            mmocr
         
     |