Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from torch import nn | |
| from typing import Optional | |
| from dataclasses import dataclass | |
| from diffusers.utils import BaseOutput | |
| from diffusers.utils.import_utils import is_xformers_available | |
| import torch.nn.functional as F | |
| from einops import rearrange, repeat | |
| import math | |
| class Transformer3DModelOutput(BaseOutput): | |
| sample: torch.FloatTensor | |
| if is_xformers_available(): | |
| import xformers | |
| import xformers.ops | |
| else: | |
| xformers = None | |
| def exists(x): | |
| return x is not None | |
| class CrossAttention(nn.Module): | |
| r""" | |
| copy from diffuser 0.11.1 | |
| A cross attention layer. | |
| Parameters: | |
| query_dim (`int`): The number of channels in the query. | |
| cross_attention_dim (`int`, *optional*): | |
| The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
| heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
| dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| bias (`bool`, *optional*, defaults to False): | |
| Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
| """ | |
| def __init__( | |
| self, | |
| query_dim: int, | |
| cross_attention_dim: Optional[int] = None, | |
| heads: int = 8, | |
| dim_head: int = 64, | |
| dropout: float = 0.0, | |
| bias=False, | |
| upcast_attention: bool = False, | |
| upcast_softmax: bool = False, | |
| added_kv_proj_dim: Optional[int] = None, | |
| norm_num_groups: Optional[int] = None, | |
| use_relative_position: bool = False, | |
| ): | |
| super().__init__() | |
| # print('num head', heads) | |
| inner_dim = dim_head * heads | |
| cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
| self.upcast_attention = upcast_attention | |
| self.upcast_softmax = upcast_softmax | |
| self.scale = dim_head**-0.5 | |
| self.heads = heads | |
| self.dim_head = dim_head | |
| # for slice_size > 0 the attention score computation | |
| # is split across the batch axis to save memory | |
| # You can set slice_size with `set_attention_slice` | |
| self.sliceable_head_dim = heads | |
| self._slice_size = None | |
| self._use_memory_efficient_attention_xformers = False # No use xformers for temporal attention | |
| self.added_kv_proj_dim = added_kv_proj_dim | |
| if norm_num_groups is not None: | |
| self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) | |
| else: | |
| self.group_norm = None | |
| self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) | |
| self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
| self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
| if self.added_kv_proj_dim is not None: | |
| self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
| self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
| self.to_out = nn.ModuleList([]) | |
| self.to_out.append(nn.Linear(inner_dim, query_dim)) | |
| self.to_out.append(nn.Dropout(dropout)) | |
| def reshape_heads_to_batch_dim(self, tensor): | |
| batch_size, seq_len, dim = tensor.shape | |
| head_size = self.heads | |
| tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
| tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) | |
| return tensor | |
| def reshape_batch_dim_to_heads(self, tensor): | |
| batch_size, seq_len, dim = tensor.shape | |
| head_size = self.heads | |
| tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
| tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
| return tensor | |
| def reshape_for_scores(self, tensor): | |
| # split heads and dims | |
| # tensor should be [b (h w)] f (d nd) | |
| batch_size, seq_len, dim = tensor.shape | |
| head_size = self.heads | |
| tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
| tensor = tensor.permute(0, 2, 1, 3).contiguous() | |
| return tensor | |
| def same_batch_dim_to_heads(self, tensor): | |
| batch_size, head_size, seq_len, dim = tensor.shape # [b (h w)] nd f d | |
| tensor = tensor.reshape(batch_size, seq_len, dim * head_size) | |
| return tensor | |
| def set_attention_slice(self, slice_size): | |
| if slice_size is not None and slice_size > self.sliceable_head_dim: | |
| raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") | |
| self._slice_size = slice_size | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, use_image_num=None): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| encoder_hidden_states = encoder_hidden_states | |
| if self.group_norm is not None: | |
| hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = self.to_q(hidden_states) # [b (h w)] f (nd * d) | |
| # print('before reshpape query shape', query.shape) | |
| dim = query.shape[-1] | |
| query = self.reshape_heads_to_batch_dim(query) # [b (h w) nd] f d | |
| # print('after reshape query shape', query.shape) | |
| if self.added_kv_proj_dim is not None: | |
| key = self.to_k(hidden_states) | |
| value = self.to_v(hidden_states) | |
| encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) | |
| encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) | |
| key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) | |
| value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) | |
| else: | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = self.to_k(encoder_hidden_states) | |
| value = self.to_v(encoder_hidden_states) | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| if attention_mask is not None: | |
| if attention_mask.shape[-1] != query.shape[1]: | |
| target_length = query.shape[1] | |
| attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
| attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
| # do not use xformers for temporal attention | |
| # # attention, what we cannot get enough of | |
| # if self._use_memory_efficient_attention_xformers: | |
| # hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
| # # Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
| # hidden_states = hidden_states.to(query.dtype) | |
| # else: | |
| # if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
| # hidden_states = self._attention(query, key, value, attention_mask) | |
| # else: | |
| # hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
| hidden_states = self._attention(query, key, value, attention_mask) | |
| # linear proj | |
| hidden_states = self.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out[1](hidden_states) | |
| return hidden_states | |
| def _attention(self, query, key, value, attention_mask=None): | |
| if self.upcast_attention: | |
| query = query.float() | |
| key = key.float() | |
| attention_scores = torch.baddbmm( | |
| torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), | |
| query, | |
| key.transpose(-1, -2), | |
| beta=0, | |
| alpha=self.scale, | |
| ) | |
| # print('query shape', query.shape) | |
| # print('key shape', key.shape) | |
| # print('value shape', value.shape) | |
| if attention_mask is not None: | |
| # print('attention_mask', attention_mask.shape) | |
| # print('attention_scores', attention_scores.shape) | |
| # exit() | |
| attention_scores = attention_scores + attention_mask | |
| if self.upcast_softmax: | |
| attention_scores = attention_scores.float() | |
| attention_probs = attention_scores.softmax(dim=-1) | |
| # print(attention_probs.shape) | |
| # cast back to the original dtype | |
| attention_probs = attention_probs.to(value.dtype) | |
| # print(attention_probs.shape) | |
| # compute attention output | |
| hidden_states = torch.bmm(attention_probs, value) | |
| # print(hidden_states.shape) | |
| # reshape hidden_states | |
| hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| # print(hidden_states.shape) | |
| # exit() | |
| return hidden_states | |
| def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): | |
| batch_size_attention = query.shape[0] | |
| hidden_states = torch.zeros( | |
| (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype | |
| ) | |
| slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] | |
| for i in range(hidden_states.shape[0] // slice_size): | |
| start_idx = i * slice_size | |
| end_idx = (i + 1) * slice_size | |
| query_slice = query[start_idx:end_idx] | |
| key_slice = key[start_idx:end_idx] | |
| if self.upcast_attention: | |
| query_slice = query_slice.float() | |
| key_slice = key_slice.float() | |
| attn_slice = torch.baddbmm( | |
| torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), | |
| query_slice, | |
| key_slice.transpose(-1, -2), | |
| beta=0, | |
| alpha=self.scale, | |
| ) | |
| if attention_mask is not None: | |
| attn_slice = attn_slice + attention_mask[start_idx:end_idx] | |
| if self.upcast_softmax: | |
| attn_slice = attn_slice.float() | |
| attn_slice = attn_slice.softmax(dim=-1) | |
| # cast back to the original dtype | |
| attn_slice = attn_slice.to(value.dtype) | |
| attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) | |
| hidden_states[start_idx:end_idx] = attn_slice | |
| # reshape hidden_states | |
| hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| return hidden_states | |
| def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): | |
| # TODO attention_mask | |
| query = query.contiguous() | |
| key = key.contiguous() | |
| value = value.contiguous() | |
| # print(query.shape) | |
| # print(key.shape) | |
| # print(value.shape) | |
| hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) | |
| # print(hidden_states.shape) | |
| hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| # print(hidden_states.shape) | |
| # exit() | |
| return hidden_states | |
| class TemporalAttention(CrossAttention): | |
| def __init__(self, | |
| query_dim: int, | |
| cross_attention_dim: Optional[int] = None, | |
| heads: int = 8, | |
| dim_head: int = 64, | |
| dropout: float = 0.0, | |
| bias=False, | |
| upcast_attention: bool = False, | |
| upcast_softmax: bool = False, | |
| added_kv_proj_dim: Optional[int] = None, | |
| norm_num_groups: Optional[int] = None, | |
| rotary_emb=None): | |
| super().__init__(query_dim, cross_attention_dim, heads, dim_head, dropout, bias, upcast_attention, upcast_softmax, added_kv_proj_dim, norm_num_groups) | |
| # relative time positional embeddings | |
| self.time_rel_pos_bias = RelativePositionBias(heads=heads, max_distance=32) # realistically will not be able to generate that many frames of video... yet | |
| self.rotary_emb = rotary_emb | |
| # self.rotary_emb = RotaryEmbedding(32) | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
| time_rel_pos_bias = self.time_rel_pos_bias(hidden_states.shape[1], device=hidden_states.device) | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| encoder_hidden_states = encoder_hidden_states | |
| if self.group_norm is not None: | |
| hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = self.to_q(hidden_states) # [b (h w)] f (nd * d) | |
| dim = query.shape[-1] | |
| if self.added_kv_proj_dim is not None: | |
| key = self.to_k(hidden_states) | |
| value = self.to_v(hidden_states) | |
| encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) | |
| encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) | |
| key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) | |
| value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) | |
| else: | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = self.to_k(encoder_hidden_states) | |
| value = self.to_v(encoder_hidden_states) | |
| if attention_mask is not None: | |
| if attention_mask.shape[-1] != query.shape[1]: | |
| target_length = query.shape[1] | |
| attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
| attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
| # Do not use xformers for temporal attention | |
| # attention, what we cannot get enough of | |
| # if self._use_memory_efficient_attention_xformers: | |
| # hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
| # # Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
| # hidden_states = hidden_states.to(query.dtype) | |
| # else: | |
| # if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
| # hidden_states = self._attention(query, key, value, attention_mask, time_rel_pos_bias) | |
| # else: | |
| # hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
| if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
| hidden_states = self._attention(query, key, value, attention_mask, time_rel_pos_bias) | |
| else: | |
| hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
| # linear proj | |
| hidden_states = self.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out[1](hidden_states) | |
| return hidden_states | |
| def _attention(self, query, key, value, attention_mask=None, time_rel_pos_bias=None): | |
| if self.upcast_attention: | |
| query = query.float() | |
| key = key.float() | |
| # print('query shape', query.shape) | |
| # print('key shape', key.shape) | |
| # print('value shape', value.shape) | |
| # reshape for adding time positional bais | |
| query = self.scale * rearrange(query, 'b f (h d) -> b h f d', h=self.heads) # d: dim_head; n: heads | |
| key = rearrange(key, 'b f (h d) -> b h f d', h=self.heads) # d: dim_head; n: heads | |
| value = rearrange(value, 'b f (h d) -> b h f d', h=self.heads) # d: dim_head; n: heads | |
| # print('query shape', query.shape) | |
| # print('key shape', key.shape) | |
| # print('value shape', value.shape) | |
| # torch.baddbmm only accepte 3-D tensor | |
| # https://runebook.dev/zh/docs/pytorch/generated/torch.baddbmm | |
| # attention_scores = self.scale * torch.matmul(query, key.transpose(-1, -2)) | |
| if exists(self.rotary_emb): | |
| query = self.rotary_emb.rotate_queries_or_keys(query) | |
| key = self.rotary_emb.rotate_queries_or_keys(key) | |
| attention_scores = torch.einsum('... h i d, ... h j d -> ... h i j', query, key) | |
| # print('attention_scores shape', attention_scores.shape) | |
| # print('time_rel_pos_bias shape', time_rel_pos_bias.shape) | |
| # print('attention_mask shape', attention_mask.shape) | |
| attention_scores = attention_scores + time_rel_pos_bias | |
| # print(attention_scores.shape) | |
| # bert from huggin face | |
| # attention_scores = attention_scores / math.sqrt(self.dim_head) | |
| # # Normalize the attention scores to probabilities. | |
| # attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
| if attention_mask is not None: | |
| # add attention mask | |
| attention_scores = attention_scores + attention_mask | |
| # vdm | |
| attention_scores = attention_scores - attention_scores.amax(dim = -1, keepdim = True).detach() | |
| # # Mask out future positions (causal mask) | |
| # mask = torch.triu(torch.ones(16, 16), diagonal=1).to(device=attention_scores.device, dtype=attention_scores.dtype) # | |
| # attention_scores.masked_fill_(mask == 1, float('-inf')) | |
| # # # disable the fisrt frame | |
| # mask = torch.zeros(16, 16).to(device=attention_scores.device, dtype=attention_scores.dtype) | |
| # mask[:, :1] = 1 | |
| # mask[0, 0] = 0 | |
| # attention_scores.masked_fill_(mask == 1, float('-inf')) | |
| # only enable the first frame to internact with others frames | |
| # mask = torch.zeros(16, 16).to(device=attention_scores.device, dtype=attention_scores.dtype) | |
| # mask[:1, 1:] = 1 | |
| # attention_scores.masked_fill_(mask == 1, float('-inf')) | |
| attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
| # print(attention_probs[0][0]) | |
| # cast back to the original dtype | |
| attention_probs = attention_probs.to(value.dtype) | |
| # compute attention output | |
| # hidden_states = torch.matmul(attention_probs, value) | |
| hidden_states = torch.einsum('... h i j, ... h j d -> ... h i d', attention_probs, value) | |
| # print(hidden_states.shape) | |
| # hidden_states = self.same_batch_dim_to_heads(hidden_states) | |
| hidden_states = rearrange(hidden_states, 'b h f d -> b f (h d)') | |
| # print(hidden_states.shape) | |
| # exit() | |
| return hidden_states | |
| class RelativePositionBias(nn.Module): | |
| def __init__( | |
| self, | |
| heads=8, | |
| num_buckets=32, | |
| max_distance=128, | |
| ): | |
| super().__init__() | |
| self.num_buckets = num_buckets | |
| self.max_distance = max_distance | |
| self.relative_attention_bias = nn.Embedding(num_buckets, heads) | |
| def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128): | |
| ret = 0 | |
| n = -relative_position | |
| num_buckets //= 2 | |
| ret += (n < 0).long() * num_buckets | |
| n = torch.abs(n) | |
| max_exact = num_buckets // 2 | |
| is_small = n < max_exact | |
| val_if_large = max_exact + ( | |
| torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) | |
| ).long() | |
| val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) | |
| ret += torch.where(is_small, n, val_if_large) | |
| return ret | |
| def forward(self, n, device): | |
| q_pos = torch.arange(n, dtype = torch.long, device = device) | |
| k_pos = torch.arange(n, dtype = torch.long, device = device) | |
| rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') | |
| rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance) | |
| values = self.relative_attention_bias(rp_bucket) | |
| return rearrange(values, 'i j h -> h i j') # num_heads, num_frames, num_frames | |
| class PseudoCrossAttention(CrossAttention): | |
| def forward(self, hidden_states, encoder_hidden_states=None, base_content=None, attention_mask=None, video_length=None): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| video_length = 17 | |
| if self.group_norm is not None: | |
| hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = self.to_q(hidden_states) | |
| dim = query.shape[-1] | |
| query = self.reshape_heads_to_batch_dim(query) | |
| if self.added_kv_proj_dim is not None: | |
| raise NotImplementedError | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = self.to_k(encoder_hidden_states) | |
| value = self.to_v(encoder_hidden_states) | |
| key = rearrange(key, "(b f) d c -> b f d c", f=video_length).contiguous() | |
| key[:, 1:] = key[:, 1:] + key[:, :1] | |
| key = rearrange(key, "b f d c -> (b f) d c").contiguous() | |
| value = rearrange(value, "(b f) d c -> b f d c", f=video_length).contiguous() | |
| value[:, 1:] = value[:, 1:] + value[:, :1] | |
| value = rearrange(value, "b f d c -> (b f) d c").contiguous() | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| if attention_mask is not None: | |
| if attention_mask.shape[-1] != query.shape[1]: | |
| target_length = query.shape[1] | |
| attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
| attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
| # attention, what we cannot get enough of | |
| if self._use_memory_efficient_attention_xformers: | |
| hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
| # Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
| hidden_states = hidden_states.to(query.dtype) | |
| else: | |
| if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
| hidden_states = self._attention(query, key, value, attention_mask) | |
| else: | |
| hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
| # hidden_states = rearrange(hidden_states, '(b f) d c -> b f d c', f=video_length).contiguous() | |
| # hidden_states[:, :1, ...] = base_content | |
| # hidden_states = rearrange(hidden_states, 'b f d c -> (b f) d c') | |
| # linear proj | |
| hidden_states = self.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out[1](hidden_states) | |
| return hidden_states | |