|
import os
|
|
|
|
import cv2
|
|
import gradio as gr
|
|
import torch
|
|
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
|
from gfpgan.utils import GFPGANer
|
|
from realesrgan.utils import RealESRGANer
|
|
|
|
os.system("pip freeze")
|
|
|
|
if not os.path.exists('realesr-general-x4v3.pth'):
|
|
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -q -P .")
|
|
if not os.path.exists('GFPGANv1.2.pth'):
|
|
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -q -P .")
|
|
if not os.path.exists('GFPGANv1.3.pth'):
|
|
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -q -P .")
|
|
if not os.path.exists('GFPGANv1.4.pth'):
|
|
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -q -P .")
|
|
if not os.path.exists('RestoreFormer.pth'):
|
|
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -q -P .")
|
|
if not os.path.exists('CodeFormer.pth'):
|
|
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -q -P .")
|
|
|
|
torch.hub.download_url_to_file(
|
|
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
|
|
'lincoln.jpg')
|
|
torch.hub.download_url_to_file(
|
|
'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
|
|
'AI-generate.jpg')
|
|
torch.hub.download_url_to_file(
|
|
'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
|
|
'Blake_Lively.jpg')
|
|
torch.hub.download_url_to_file(
|
|
'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
|
|
'10045.png')
|
|
|
|
|
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
|
model_path = 'realesr-general-x4v3.pth'
|
|
half = True if torch.cuda.is_available() else False
|
|
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
|
|
|
os.makedirs('output', exist_ok=True)
|
|
|
|
|
|
def inference(img, version, scale, weight):
|
|
weight /= 100
|
|
print(img, version, scale, weight)
|
|
try:
|
|
extension = os.path.splitext(os.path.basename(str(img)))[1]
|
|
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
|
if len(img.shape) == 3 and img.shape[2] == 4:
|
|
img_mode = 'RGBA'
|
|
elif len(img.shape) == 2:
|
|
img_mode = None
|
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
|
else:
|
|
img_mode = None
|
|
|
|
h, w = img.shape[0:2]
|
|
if h < 300:
|
|
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
|
|
|
if version == 'v1.2':
|
|
face_enhancer = GFPGANer(
|
|
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
|
elif version == 'v1.3':
|
|
face_enhancer = GFPGANer(
|
|
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
|
elif version == 'v1.4':
|
|
face_enhancer = GFPGANer(
|
|
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
|
elif version == 'RestoreFormer':
|
|
face_enhancer = GFPGANer(
|
|
model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
|
elif version == 'CodeFormer':
|
|
face_enhancer = GFPGANer(
|
|
model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
|
|
|
try:
|
|
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
|
|
except RuntimeError as error:
|
|
print('Error', error)
|
|
|
|
try:
|
|
if scale != 2:
|
|
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
|
h, w = img.shape[0:2]
|
|
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
|
except Exception as error:
|
|
print('wrong scale input.', error)
|
|
if img_mode == 'RGBA':
|
|
extension = 'png'
|
|
else:
|
|
extension = 'jpg'
|
|
save_path = f'output/out.{extension}'
|
|
cv2.imwrite(save_path, output)
|
|
|
|
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
|
return output, save_path
|
|
except Exception as error:
|
|
print('global exception', error)
|
|
return None, None
|
|
|
|
|
|
title = "GFPGAN: Practical Face Restoration Algorithm"
|
|
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
|
|
It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
|
|
To use it, simply upload your image.<br>
|
|
If GFPGAN is helpful, please help to β the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends π
|
|
"""
|
|
article = r"""
|
|
[](https://github.com/TencentARC/GFPGAN/releases)
|
|
[](https://github.com/TencentARC/GFPGAN)
|
|
[](https://arxiv.org/abs/2101.04061)
|
|
"""
|
|
|
|
demo = gr.Interface(
|
|
inference, [
|
|
gr.Image(type="filepath", label="Input"),
|
|
gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], type="value", value='v1.4', label='version'),
|
|
gr.Number(label="Rescaling factor", value=2),
|
|
gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', value=50)
|
|
], [
|
|
gr.Image(type="numpy", label="Output (The whole image)", format="png"),
|
|
gr.File(label="Download the output image")
|
|
],
|
|
title=title,
|
|
description=description,
|
|
article=article,
|
|
examples=[['AI-generate.jpg', 'v1.4', 2, 50], ],
|
|
flagging_mode="never",
|
|
cache_mode="lazy",
|
|
delete_cache=(1800, 3600),)
|
|
demo.queue()
|
|
demo.launch(show_error=True)
|
|
|