import streamlit as st import torch import transformers st.markdown("### Articles classificator.") # st.markdown("", unsafe_allow_html=True) @st.cache def LoadModel(): return torch.load('model.pt'), AutoTokenizer.from_pretrained('bert-base-uncased')() model, tokenizer = LoadModel() def process(title, summary): text = title + summary model.eval() lines = [text] X = tokenizer(lines, padding=True, truncation=True, return_tensors="pt") out = model(X) probs = torch.exp(out[0]) return probs title = st.text_area("Title") summary = st.text_area("Summary") st.markdown(f"{process(title, summary)}")