import gradio as gr from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") def get_completion(raw_image): inputs = processor(raw_image, return_tensors="pt") out = model.generate(**inputs) return processor.decode(out[0], skip_special_tokens=True) demo = gr.Interface(fn=get_completion, inputs=[gr.Image(label="Upload image", type="pil")], outputs=[gr.Textbox(label="Caption")], title="Image Captioning with BLIP", description="Caption any image using the BLIP model", allow_flagging="never", examples=["https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg", "https://free-images.com/sm/9596/dog_animal_greyhound_983023.jpg"]) demo.launch()