Shannon Shen
commited on
Commit
·
29d3845
1
Parent(s):
ad8dc97
black formatting
Browse files- tools/train_net.py +51 -32
tools/train_net.py
CHANGED
|
@@ -14,7 +14,13 @@ from detectron2.data import DatasetMapper, build_detection_train_loader
|
|
| 14 |
|
| 15 |
from detectron2.data.datasets import register_coco_instances
|
| 16 |
|
| 17 |
-
from detectron2.engine import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
from detectron2.evaluation import (
|
| 19 |
COCOEvaluator,
|
| 20 |
verify_results,
|
|
@@ -25,12 +31,14 @@ import pandas as pd
|
|
| 25 |
|
| 26 |
def get_augs(cfg):
|
| 27 |
"""Add all the desired augmentations here. A list of availble augmentations
|
| 28 |
-
can be found here:
|
| 29 |
https://detectron2.readthedocs.io/en/latest/modules/data_transforms.html
|
| 30 |
"""
|
| 31 |
augs = [
|
| 32 |
T.ResizeShortestEdge(
|
| 33 |
-
cfg.INPUT.MIN_SIZE_TRAIN,
|
|
|
|
|
|
|
| 34 |
)
|
| 35 |
]
|
| 36 |
if cfg.INPUT.CROP.ENABLED:
|
|
@@ -42,9 +50,8 @@ def get_augs(cfg):
|
|
| 42 |
cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
|
| 43 |
)
|
| 44 |
)
|
| 45 |
-
horizontal_flip: bool =
|
| 46 |
-
augs.append(T.RandomFlip(horizontal=horizontal_flip,
|
| 47 |
-
vertical=not horizontal_flip))
|
| 48 |
# Rotate the image between -90 to 0 degrees clockwise around the centre
|
| 49 |
augs.append(T.RandomRotation(angle=[-90.0, 0.0]))
|
| 50 |
return augs
|
|
@@ -86,8 +93,7 @@ class Trainer(DefaultTrainer):
|
|
| 86 |
model = GeneralizedRCNNWithTTA(cfg, model)
|
| 87 |
evaluators = [
|
| 88 |
cls.build_evaluator(
|
| 89 |
-
cfg, name, output_folder=os.path.join(
|
| 90 |
-
cfg.OUTPUT_DIR, "inference_TTA")
|
| 91 |
)
|
| 92 |
for name in cfg.DATASETS.TEST
|
| 93 |
]
|
|
@@ -99,13 +105,12 @@ class Trainer(DefaultTrainer):
|
|
| 99 |
def eval_and_save(cls, cfg, model):
|
| 100 |
evaluators = [
|
| 101 |
cls.build_evaluator(
|
| 102 |
-
cfg, name, output_folder=os.path.join(
|
| 103 |
-
cfg.OUTPUT_DIR, "inference")
|
| 104 |
)
|
| 105 |
for name in cfg.DATASETS.TEST
|
| 106 |
]
|
| 107 |
res = cls.test(cfg, model, evaluators)
|
| 108 |
-
pd.DataFrame(res).to_csv(os.path.join(cfg.OUTPUT_DIR,
|
| 109 |
return res
|
| 110 |
|
| 111 |
|
|
@@ -114,12 +119,12 @@ def setup(args):
|
|
| 114 |
Create configs and perform basic setups.
|
| 115 |
"""
|
| 116 |
cfg = get_cfg()
|
| 117 |
-
|
| 118 |
if args.config_file != "":
|
| 119 |
cfg.merge_from_file(args.config_file)
|
| 120 |
cfg.merge_from_list(args.opts)
|
| 121 |
|
| 122 |
-
with open(args.json_annotation_train,
|
| 123 |
anno_file = json.load(fp)
|
| 124 |
|
| 125 |
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(anno_file["categories"])
|
|
@@ -134,13 +139,19 @@ def setup(args):
|
|
| 134 |
|
| 135 |
def main(args):
|
| 136 |
# Register Datasets
|
| 137 |
-
register_coco_instances(
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
-
register_coco_instances(
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
| 144 |
cfg = setup(args)
|
| 145 |
|
| 146 |
if args.eval_only:
|
|
@@ -156,7 +167,7 @@ def main(args):
|
|
| 156 |
verify_results(cfg, res)
|
| 157 |
|
| 158 |
# Save the evaluation results
|
| 159 |
-
pd.DataFrame(res).to_csv(f
|
| 160 |
return res
|
| 161 |
|
| 162 |
# Ensure that the Output directory exists
|
|
@@ -174,8 +185,7 @@ def main(args):
|
|
| 174 |
)
|
| 175 |
if cfg.TEST.AUG.ENABLED:
|
| 176 |
trainer.register_hooks(
|
| 177 |
-
[hooks.EvalHook(
|
| 178 |
-
0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
|
| 179 |
)
|
| 180 |
return trainer.train()
|
| 181 |
|
|
@@ -184,16 +194,25 @@ if __name__ == "__main__":
|
|
| 184 |
parser = default_argument_parser()
|
| 185 |
|
| 186 |
# Extra Configurations for dataset names and paths
|
| 187 |
-
parser.add_argument(
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
args = parser.parse_args()
|
| 198 |
print("Command Line Args:", args)
|
| 199 |
|
|
|
|
| 14 |
|
| 15 |
from detectron2.data.datasets import register_coco_instances
|
| 16 |
|
| 17 |
+
from detectron2.engine import (
|
| 18 |
+
DefaultTrainer,
|
| 19 |
+
default_argument_parser,
|
| 20 |
+
default_setup,
|
| 21 |
+
hooks,
|
| 22 |
+
launch,
|
| 23 |
+
)
|
| 24 |
from detectron2.evaluation import (
|
| 25 |
COCOEvaluator,
|
| 26 |
verify_results,
|
|
|
|
| 31 |
|
| 32 |
def get_augs(cfg):
|
| 33 |
"""Add all the desired augmentations here. A list of availble augmentations
|
| 34 |
+
can be found here:
|
| 35 |
https://detectron2.readthedocs.io/en/latest/modules/data_transforms.html
|
| 36 |
"""
|
| 37 |
augs = [
|
| 38 |
T.ResizeShortestEdge(
|
| 39 |
+
cfg.INPUT.MIN_SIZE_TRAIN,
|
| 40 |
+
cfg.INPUT.MAX_SIZE_TRAIN,
|
| 41 |
+
cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING,
|
| 42 |
)
|
| 43 |
]
|
| 44 |
if cfg.INPUT.CROP.ENABLED:
|
|
|
|
| 50 |
cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
|
| 51 |
)
|
| 52 |
)
|
| 53 |
+
horizontal_flip: bool = cfg.INPUT.RANDOM_FLIP == "horizontal"
|
| 54 |
+
augs.append(T.RandomFlip(horizontal=horizontal_flip, vertical=not horizontal_flip))
|
|
|
|
| 55 |
# Rotate the image between -90 to 0 degrees clockwise around the centre
|
| 56 |
augs.append(T.RandomRotation(angle=[-90.0, 0.0]))
|
| 57 |
return augs
|
|
|
|
| 93 |
model = GeneralizedRCNNWithTTA(cfg, model)
|
| 94 |
evaluators = [
|
| 95 |
cls.build_evaluator(
|
| 96 |
+
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
|
|
|
|
| 97 |
)
|
| 98 |
for name in cfg.DATASETS.TEST
|
| 99 |
]
|
|
|
|
| 105 |
def eval_and_save(cls, cfg, model):
|
| 106 |
evaluators = [
|
| 107 |
cls.build_evaluator(
|
| 108 |
+
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference")
|
|
|
|
| 109 |
)
|
| 110 |
for name in cfg.DATASETS.TEST
|
| 111 |
]
|
| 112 |
res = cls.test(cfg, model, evaluators)
|
| 113 |
+
pd.DataFrame(res).to_csv(os.path.join(cfg.OUTPUT_DIR, "eval.csv"))
|
| 114 |
return res
|
| 115 |
|
| 116 |
|
|
|
|
| 119 |
Create configs and perform basic setups.
|
| 120 |
"""
|
| 121 |
cfg = get_cfg()
|
| 122 |
+
|
| 123 |
if args.config_file != "":
|
| 124 |
cfg.merge_from_file(args.config_file)
|
| 125 |
cfg.merge_from_list(args.opts)
|
| 126 |
|
| 127 |
+
with open(args.json_annotation_train, "r") as fp:
|
| 128 |
anno_file = json.load(fp)
|
| 129 |
|
| 130 |
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(anno_file["categories"])
|
|
|
|
| 139 |
|
| 140 |
def main(args):
|
| 141 |
# Register Datasets
|
| 142 |
+
register_coco_instances(
|
| 143 |
+
f"{args.dataset_name}-train",
|
| 144 |
+
{},
|
| 145 |
+
args.json_annotation_train,
|
| 146 |
+
args.image_path_train,
|
| 147 |
+
)
|
| 148 |
|
| 149 |
+
register_coco_instances(
|
| 150 |
+
f"{args.dataset_name}-val",
|
| 151 |
+
{},
|
| 152 |
+
args.json_annotation_val,
|
| 153 |
+
args.image_path_val
|
| 154 |
+
)
|
| 155 |
cfg = setup(args)
|
| 156 |
|
| 157 |
if args.eval_only:
|
|
|
|
| 167 |
verify_results(cfg, res)
|
| 168 |
|
| 169 |
# Save the evaluation results
|
| 170 |
+
pd.DataFrame(res).to_csv(f"{cfg.OUTPUT_DIR}/eval.csv")
|
| 171 |
return res
|
| 172 |
|
| 173 |
# Ensure that the Output directory exists
|
|
|
|
| 185 |
)
|
| 186 |
if cfg.TEST.AUG.ENABLED:
|
| 187 |
trainer.register_hooks(
|
| 188 |
+
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
|
|
|
|
| 189 |
)
|
| 190 |
return trainer.train()
|
| 191 |
|
|
|
|
| 194 |
parser = default_argument_parser()
|
| 195 |
|
| 196 |
# Extra Configurations for dataset names and paths
|
| 197 |
+
parser.add_argument(
|
| 198 |
+
"--dataset_name",
|
| 199 |
+
help="The Dataset Name")
|
| 200 |
+
parser.add_argument(
|
| 201 |
+
"--json_annotation_train",
|
| 202 |
+
help="The path to the training set JSON annotation",
|
| 203 |
+
)
|
| 204 |
+
parser.add_argument(
|
| 205 |
+
"--image_path_train",
|
| 206 |
+
help="The path to the training set image folder",
|
| 207 |
+
)
|
| 208 |
+
parser.add_argument(
|
| 209 |
+
"--json_annotation_val",
|
| 210 |
+
help="The path to the validation set JSON annotation",
|
| 211 |
+
)
|
| 212 |
+
parser.add_argument(
|
| 213 |
+
"--image_path_val",
|
| 214 |
+
help="The path to the validation set image folder",
|
| 215 |
+
)
|
| 216 |
args = parser.parse_args()
|
| 217 |
print("Command Line Args:", args)
|
| 218 |
|