Charles Kabui commited on
Commit
4ce1f5f
·
1 Parent(s): a7b5719

print('document_image_1.info.get(annotation_key) == True, end:', document_image_1.info.get(annotation_key) == True)

Browse files
Files changed (4) hide show
  1. analysis.ipynb +12 -17
  2. data/preview.ipynb +0 -0
  3. main.py +105 -37
  4. utils/get_features.py +0 -4
analysis.ipynb CHANGED
@@ -11,18 +11,9 @@
11
  },
12
  {
13
  "cell_type": "code",
14
- "execution_count": 2,
15
  "metadata": {},
16
- "outputs": [
17
- {
18
- "name": "stdout",
19
- "output_type": "stream",
20
- "text": [
21
- "The autoreload extension is already loaded. To reload it, use:\n",
22
- " %reload_ext autoreload\n"
23
- ]
24
- }
25
- ],
26
  "source": [
27
  "%load_ext autoreload\n",
28
  "%autoreload 2\n",
@@ -310,7 +301,7 @@
310
  },
311
  {
312
  "cell_type": "code",
313
- "execution_count": 5,
314
  "metadata": {},
315
  "outputs": [
316
  {
@@ -338,10 +329,14 @@
338
  "name": "stdout",
339
  "output_type": "stream",
340
  "text": [
341
- "tensor(0)\n",
342
- "tensor(0.)\n",
343
- "['Text', 'Picture', 'Text', 'Picture', 'Title', 'Text', 'Picture', 'Text', 'Text', 'Picture', 'Picture', 'Text', 'Text', 'Title', 'Section-header', 'Picture', 'Title', 'Picture', 'Picture', 'Picture', 'Section-header', 'Title', 'Picture', 'Caption', 'Title', 'Text', 'Text', 'Picture', 'Caption', 'Title', 'Text', 'Title', 'Text', 'Page-header', 'Section-header', 'Section-header', 'Caption', 'Title', 'Page-header', 'Section-header', 'Section-header', 'Page-header', 'Text', 'Picture', 'Caption', 'Text', 'Caption', 'Text', 'Picture', 'Page-header', 'Title', 'Picture', 'Picture', 'Text', 'Page-footer', 'Section-header', 'Caption', 'Section-header', 'Title', 'Text', 'Picture', 'Page-header', 'Picture', 'Caption', 'Caption', 'Section-header', 'Section-header', 'Picture', 'Section-header', 'Title', 'Picture', 'Page-footer', 'Caption', 'Title', 'Text', 'Picture', 'Title', 'Picture', 'Text', 'Text', 'Section-header', 'Picture', 'Picture', 'Section-header', 'Caption', 'Text']\n",
344
- "{0: 0.17, 1: 0.24545454545454548, 2: 0.3209090909090909, 3: 0.3963636363636364, 4: 0.4718181818181819, 5: 0.5472727272727274, 6: 0.6227272727272728, 7: 0.6981818181818182, 8: 0.7736363636363638, 9: 0.8490909090909092, 10: 0.9245454545454547}\n",
 
 
 
 
345
  "Keyboard interruption in main thread... closing server.\n"
346
  ]
347
  },
@@ -349,7 +344,7 @@
349
  "data": {
350
  "text/plain": []
351
  },
352
- "execution_count": 5,
353
  "metadata": {},
354
  "output_type": "execute_result"
355
  }
 
11
  },
12
  {
13
  "cell_type": "code",
14
+ "execution_count": 1,
15
  "metadata": {},
16
+ "outputs": [],
 
 
 
 
 
 
 
 
 
17
  "source": [
18
  "%load_ext autoreload\n",
19
  "%autoreload 2\n",
 
301
  },
302
  {
303
  "cell_type": "code",
304
+ "execution_count": 33,
305
  "metadata": {},
306
  "outputs": [
307
  {
 
329
  "name": "stdout",
330
  "output_type": "stream",
331
  "text": [
332
+ "{'predicted_bboxes': 'predicted_bboxes', 'predicted_scores': 'predicted_scores', 'predicted_labels': 'predicted_labels'}\n",
333
+ "document_image_1.info.get(annotation_key) == True, start: False\n",
334
+ "document_image_1.info.get(annotation_key) == True, middle: False\n",
335
+ "document_image_1.info.get(annotation_key) == True, end: True\n",
336
+ "{'predicted_bboxes': 'reduced_predicted_bboxes', 'predicted_scores': 'reduced_predicted_scores', 'predicted_labels': 'reduced_predicted_labels'}\n",
337
+ "document_image_1.info.get(annotation_key) == True, start: False\n",
338
+ "document_image_1.info.get(annotation_key) == True, middle: False\n",
339
+ "document_image_1.info.get(annotation_key) == True, end: True\n",
340
  "Keyboard interruption in main thread... closing server.\n"
341
  ]
342
  },
 
344
  "data": {
345
  "text/plain": []
346
  },
347
+ "execution_count": 33,
348
  "metadata": {},
349
  "output_type": "execute_result"
350
  }
data/preview.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
main.py CHANGED
@@ -7,6 +7,7 @@ from PIL import Image
7
  from utils.get_features import get_features
8
  from imagehash import average_hash
9
  from sklearn.metrics.pairwise import cosine_similarity
 
10
 
11
  label_map = {0: 'Caption', 1: 'Footnote', 2: 'Formula', 3: 'List-item', 4: 'Page-footer', 5: 'Page-header', 6: 'Picture', 7: 'Section-header', 8: 'Table', 9: 'Text', 10: 'Title'}
12
  label_names = list(label_map.values())
@@ -17,39 +18,96 @@ cache = {
17
  'document_image_1_features': None,
18
  'document_image_2_features': None,
19
  }
20
- pre_message_style = 'overflow: auto;border: 2px solid pink;padding: 4px;'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- def similarity_fn(document_image_1: Image.Image, document_image_2: Image.Image, model: lp.Detectron2LayoutModel):
23
  message = None
 
 
 
 
 
 
24
  try:
25
- document_image_1_hash = str(average_hash(document_image_1))
26
- document_image_2_hash = str(average_hash(document_image_2))
27
-
28
- if document_image_1_hash == cache['document_image_1_hash']:
29
- document_image_1_features = cache['document_image_1_features']
30
  else:
31
- document_image_1_features = get_features(document_image_1, model, label_names)
32
- cache['document_image_1_hash'] = document_image_1_hash
33
- cache['document_image_1_features'] = document_image_1_features
34
 
35
- if document_image_2_hash == cache['document_image_2_hash']:
36
- document_image_2_features = cache['document_image_2_features']
37
- else:
38
- document_image_2_features = get_features(document_image_2, model, label_names)
39
- cache['document_image_2_hash'] = document_image_2_hash
40
- cache['document_image_2_features'] = document_image_2_features
 
 
 
 
 
 
 
 
 
 
41
 
42
- [[similarity]] = cosine_similarity(
43
- [
44
- cache['document_image_1_features']['vectors']
45
- ],
46
- [
47
- cache['document_image_2_features']['vectors']
48
- ])
49
- message = f'<pre style="{pre_message_style}">Similarity between the two documents is: {similarity}<pre>'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  except Exception as e:
51
  message = f'<pre style="{pre_message_style}">{traceback.format_exc()}<pre>'
52
- return gr.HTML(message, visible=True)
 
 
 
 
 
53
 
54
  def load_image(filename, page = 0):
55
  try:
@@ -83,7 +141,7 @@ def document_view(document_number: int):
83
  document = gr.Image(type="pil", label=f"Document {document_number}", visible=False)
84
  document_error_message = gr.HTML(label="Error Message", visible=False)
85
  document_preview = gr.UploadButton(
86
- "Click to PDF or Document Image",
87
  file_types=["image", ".pdf"],
88
  file_count="single")
89
  with gr.Tab("From URL", id=1):
@@ -114,7 +172,7 @@ def app(*, model_path, config_path, debug = False):
114
  image { max-height="86vh" !important; }
115
  .center { display: flex; flex: 1 1 auto; align-items: center; align-content: center; justify-content: center; justify-items: center; }
116
  .hr { width: 100%; display: block; padding: 0; margin: 0; background: gray; height: 4px; border: none; }
117
- '''
118
  with gr.Blocks(title=title, css=css) as app:
119
  with gr.Row():
120
  gr.HTML(value=description, elem_classes=['center'])
@@ -126,15 +184,25 @@ def app(*, model_path, config_path, debug = False):
126
  gr.HTML('<hr/>', elem_classes=['hr'])
127
  with gr.Row(elem_classes=['center']):
128
  with gr.Column():
129
- submit = gr.Button(value="Similarity", variant="primary")
130
- reset = gr.Button(value="Reset", variant="secondary")
131
  with gr.Column():
132
- similarity_output = gr.HTML(visible=False)
133
- submit.click(
134
- fn=lambda document_1_image, document_2_image: similarity_fn(
135
- document_1_image,
136
- document_2_image,
137
- model),
138
- inputs=[document_1_image, document_2_image],
139
- outputs=[similarity_output])
 
 
 
 
 
 
 
 
 
 
 
140
  return app.launch(debug=debug)
 
7
  from utils.get_features import get_features
8
  from imagehash import average_hash
9
  from sklearn.metrics.pairwise import cosine_similarity
10
+ from utils.visualize_bboxes_on_image import visualize_bboxes_on_image
11
 
12
  label_map = {0: 'Caption', 1: 'Footnote', 2: 'Formula', 3: 'List-item', 4: 'Page-footer', 5: 'Page-header', 6: 'Picture', 7: 'Section-header', 8: 'Table', 9: 'Text', 10: 'Title'}
13
  label_names = list(label_map.values())
 
18
  'document_image_1_features': None,
19
  'document_image_2_features': None,
20
  }
21
+ pre_message_style = 'overflow:auto;border:2px solid pink;padding:4px;border-radius:4px;'
22
+ visualize_bboxes_on_image_kwargs = {
23
+ 'label_text_color': 'white',
24
+ 'label_rectangle_color': 'black',
25
+ 'label_text_size': 12,
26
+ 'label_text_padding': 3,
27
+ 'label_rectangle_left_margin': 0,
28
+ 'label_rectangle_top_margin': 0
29
+ }
30
+ vectors_types = ['vectors', 'weighted_vectors', 'reduced_vectors', 'reduced_weighted_vectors']
31
+
32
+ annotation_key = 'is_annotated_document_image'
33
+ annotation_original_image_key = 'original_image'
34
+ def annotate_document_image(document_image: Image.Image, original_document_image: Image.Image):
35
+ document_image.info.update({
36
+ annotation_key: True,
37
+ annotation_original_image_key: original_document_image
38
+ })
39
+ return document_image
40
+
41
+ def get_original_document_image(document_image: Image.Image):
42
+ if document_image.info.get(annotation_key) == True:
43
+ return document_image.info.get(annotation_original_image_key)
44
+ return document_image
45
 
46
+ def similarity_fn(model: lp.Detectron2LayoutModel, document_image_1: Image.Image, document_image_2: Image.Image, vectors_type: str):
47
  message = None
48
+ annotations = {
49
+ 'predicted_bboxes': 'predicted_bboxes' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_bboxes',
50
+ 'predicted_scores': 'predicted_scores' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_scores',
51
+ 'predicted_labels': 'predicted_labels' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_labels',
52
+ }
53
+ show_vectors_type = False
54
  try:
55
+ if document_image_1 is None or document_image_2 is None:
56
+ message = f'<pre style="{pre_message_style}">Please load both the documents to compare.<pre>'
 
 
 
57
  else:
58
+ document_image_1 = get_original_document_image(document_image_1)
59
+ document_image_2 = get_original_document_image(document_image_2)
 
60
 
61
+ document_image_1_hash = str(average_hash(document_image_1))
62
+ document_image_2_hash = str(average_hash(document_image_2))
63
+
64
+ if document_image_1_hash == cache['document_image_1_hash']:
65
+ document_image_1_features = cache['document_image_1_features']
66
+ else:
67
+ document_image_1_features = get_features(document_image_1, model, label_names)
68
+ cache['document_image_1_hash'] = document_image_1_hash
69
+ cache['document_image_1_features'] = document_image_1_features
70
+
71
+ if document_image_2_hash == cache['document_image_2_hash']:
72
+ document_image_2_features = cache['document_image_2_features']
73
+ else:
74
+ document_image_2_features = get_features(document_image_2, model, label_names)
75
+ cache['document_image_2_hash'] = document_image_2_hash
76
+ cache['document_image_2_features'] = document_image_2_features
77
 
78
+ [[similarity]] = cosine_similarity(
79
+ [
80
+ cache['document_image_1_features'][vectors_type]
81
+ ],
82
+ [
83
+ cache['document_image_2_features'][vectors_type]
84
+ ])
85
+ message = f'<pre style="{pre_message_style}">Similarity between the two documents is: {round(similarity, 4)}<pre>'
86
+ annotated_document_image_1 = visualize_bboxes_on_image(
87
+ image = document_image_1,
88
+ bboxes = cache['document_image_1_features'][annotations['predicted_bboxes']],
89
+ titles = [f'{label}, score:{round(score, 2)}' for label, score in zip(
90
+ cache['document_image_1_features'][annotations['predicted_labels']],
91
+ cache['document_image_1_features'][annotations['predicted_scores']])],
92
+ **visualize_bboxes_on_image_kwargs)
93
+ annotated_document_image_2 = visualize_bboxes_on_image(
94
+ image = document_image_2,
95
+ bboxes = cache['document_image_2_features'][annotations['predicted_bboxes']],
96
+ titles = [f'{label}, score:{score}' for label, score in zip(
97
+ cache['document_image_2_features'][annotations['predicted_labels']],
98
+ cache['document_image_2_features'][annotations['predicted_scores']])],
99
+ **visualize_bboxes_on_image_kwargs)
100
+ show_vectors_type = True
101
+ document_image_1 = annotate_document_image(annotated_document_image_1, document_image_1)
102
+ document_image_2 = annotate_document_image(annotated_document_image_2, document_image_2)
103
  except Exception as e:
104
  message = f'<pre style="{pre_message_style}">{traceback.format_exc()}<pre>'
105
+ return [
106
+ gr.HTML(message, visible=True),
107
+ document_image_1,
108
+ document_image_2,
109
+ gr.Dropdown(visible=show_vectors_type)
110
+ ]
111
 
112
  def load_image(filename, page = 0):
113
  try:
 
141
  document = gr.Image(type="pil", label=f"Document {document_number}", visible=False)
142
  document_error_message = gr.HTML(label="Error Message", visible=False)
143
  document_preview = gr.UploadButton(
144
+ "Upload PDF or Document Image",
145
  file_types=["image", ".pdf"],
146
  file_count="single")
147
  with gr.Tab("From URL", id=1):
 
172
  image { max-height="86vh" !important; }
173
  .center { display: flex; flex: 1 1 auto; align-items: center; align-content: center; justify-content: center; justify-items: center; }
174
  .hr { width: 100%; display: block; padding: 0; margin: 0; background: gray; height: 4px; border: none; }
175
+ '''
176
  with gr.Blocks(title=title, css=css) as app:
177
  with gr.Row():
178
  gr.HTML(value=description, elem_classes=['center'])
 
184
  gr.HTML('<hr/>', elem_classes=['hr'])
185
  with gr.Row(elem_classes=['center']):
186
  with gr.Column():
187
+ submit = gr.Button(value="Get Similarity", variant="primary")
 
188
  with gr.Column():
189
+ vectors_type = gr.Dropdown(
190
+ choices = vectors_types,
191
+ value = vectors_types[0],
192
+ visible = False,
193
+ label = "Vectors Type",
194
+ info = "Select the Vectors Type to use for Similarity Calculation")
195
+ similarity_output = gr.HTML(label="Similarity Score", visible=False)
196
+ reset = gr.Button(value="Reset", variant="secondary")
197
+ kwargs = {
198
+ 'fn': lambda document_1_image, document_2_image, vectors_type: similarity_fn(
199
+ model,
200
+ document_1_image,
201
+ document_2_image,
202
+ vectors_type),
203
+ 'inputs': [document_1_image, document_2_image, vectors_type],
204
+ 'outputs': [similarity_output, document_1_image, document_2_image, vectors_type]
205
+ }
206
+ submit.click(**kwargs)
207
+ vectors_type.change(**kwargs)
208
  return app.launch(debug=debug)
utils/get_features.py CHANGED
@@ -31,10 +31,6 @@ def get_vectors(*,
31
  '''
32
  index_of_jaccard_index = jaccard_indexes.argmax() if not weighted_jaccard_index else np.multiply(jaccard_indexes, predicted_scores).argmax()
33
  jaccard_index = jaccard_indexes[index_of_jaccard_index]
34
- print(index_of_jaccard_index)
35
- print(jaccard_index)
36
- print(predicted_labels)
37
- print(labels_nonce)
38
  jaccard_index_bbox_label__nonce = labels_nonce[predicted_labels[index_of_jaccard_index]]
39
  jaccard_index_bbox_score = predicted_scores[index_of_jaccard_index]
40
  vector = region_nonce * jaccard_index * jaccard_index_bbox_label__nonce * jaccard_index_bbox_score
 
31
  '''
32
  index_of_jaccard_index = jaccard_indexes.argmax() if not weighted_jaccard_index else np.multiply(jaccard_indexes, predicted_scores).argmax()
33
  jaccard_index = jaccard_indexes[index_of_jaccard_index]
 
 
 
 
34
  jaccard_index_bbox_label__nonce = labels_nonce[predicted_labels[index_of_jaccard_index]]
35
  jaccard_index_bbox_score = predicted_scores[index_of_jaccard_index]
36
  vector = region_nonce * jaccard_index * jaccard_index_bbox_label__nonce * jaccard_index_bbox_score