Charles Kabui
commited on
Commit
·
4ce1f5f
1
Parent(s):
a7b5719
print('document_image_1.info.get(annotation_key) == True, end:', document_image_1.info.get(annotation_key) == True)
Browse files- analysis.ipynb +12 -17
- data/preview.ipynb +0 -0
- main.py +105 -37
- utils/get_features.py +0 -4
analysis.ipynb
CHANGED
|
@@ -11,18 +11,9 @@
|
|
| 11 |
},
|
| 12 |
{
|
| 13 |
"cell_type": "code",
|
| 14 |
-
"execution_count":
|
| 15 |
"metadata": {},
|
| 16 |
-
"outputs": [
|
| 17 |
-
{
|
| 18 |
-
"name": "stdout",
|
| 19 |
-
"output_type": "stream",
|
| 20 |
-
"text": [
|
| 21 |
-
"The autoreload extension is already loaded. To reload it, use:\n",
|
| 22 |
-
" %reload_ext autoreload\n"
|
| 23 |
-
]
|
| 24 |
-
}
|
| 25 |
-
],
|
| 26 |
"source": [
|
| 27 |
"%load_ext autoreload\n",
|
| 28 |
"%autoreload 2\n",
|
|
@@ -310,7 +301,7 @@
|
|
| 310 |
},
|
| 311 |
{
|
| 312 |
"cell_type": "code",
|
| 313 |
-
"execution_count":
|
| 314 |
"metadata": {},
|
| 315 |
"outputs": [
|
| 316 |
{
|
|
@@ -338,10 +329,14 @@
|
|
| 338 |
"name": "stdout",
|
| 339 |
"output_type": "stream",
|
| 340 |
"text": [
|
| 341 |
-
"
|
| 342 |
-
"
|
| 343 |
-
"
|
| 344 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
"Keyboard interruption in main thread... closing server.\n"
|
| 346 |
]
|
| 347 |
},
|
|
@@ -349,7 +344,7 @@
|
|
| 349 |
"data": {
|
| 350 |
"text/plain": []
|
| 351 |
},
|
| 352 |
-
"execution_count":
|
| 353 |
"metadata": {},
|
| 354 |
"output_type": "execute_result"
|
| 355 |
}
|
|
|
|
| 11 |
},
|
| 12 |
{
|
| 13 |
"cell_type": "code",
|
| 14 |
+
"execution_count": 1,
|
| 15 |
"metadata": {},
|
| 16 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
"source": [
|
| 18 |
"%load_ext autoreload\n",
|
| 19 |
"%autoreload 2\n",
|
|
|
|
| 301 |
},
|
| 302 |
{
|
| 303 |
"cell_type": "code",
|
| 304 |
+
"execution_count": 33,
|
| 305 |
"metadata": {},
|
| 306 |
"outputs": [
|
| 307 |
{
|
|
|
|
| 329 |
"name": "stdout",
|
| 330 |
"output_type": "stream",
|
| 331 |
"text": [
|
| 332 |
+
"{'predicted_bboxes': 'predicted_bboxes', 'predicted_scores': 'predicted_scores', 'predicted_labels': 'predicted_labels'}\n",
|
| 333 |
+
"document_image_1.info.get(annotation_key) == True, start: False\n",
|
| 334 |
+
"document_image_1.info.get(annotation_key) == True, middle: False\n",
|
| 335 |
+
"document_image_1.info.get(annotation_key) == True, end: True\n",
|
| 336 |
+
"{'predicted_bboxes': 'reduced_predicted_bboxes', 'predicted_scores': 'reduced_predicted_scores', 'predicted_labels': 'reduced_predicted_labels'}\n",
|
| 337 |
+
"document_image_1.info.get(annotation_key) == True, start: False\n",
|
| 338 |
+
"document_image_1.info.get(annotation_key) == True, middle: False\n",
|
| 339 |
+
"document_image_1.info.get(annotation_key) == True, end: True\n",
|
| 340 |
"Keyboard interruption in main thread... closing server.\n"
|
| 341 |
]
|
| 342 |
},
|
|
|
|
| 344 |
"data": {
|
| 345 |
"text/plain": []
|
| 346 |
},
|
| 347 |
+
"execution_count": 33,
|
| 348 |
"metadata": {},
|
| 349 |
"output_type": "execute_result"
|
| 350 |
}
|
data/preview.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
main.py
CHANGED
|
@@ -7,6 +7,7 @@ from PIL import Image
|
|
| 7 |
from utils.get_features import get_features
|
| 8 |
from imagehash import average_hash
|
| 9 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
| 10 |
|
| 11 |
label_map = {0: 'Caption', 1: 'Footnote', 2: 'Formula', 3: 'List-item', 4: 'Page-footer', 5: 'Page-header', 6: 'Picture', 7: 'Section-header', 8: 'Table', 9: 'Text', 10: 'Title'}
|
| 12 |
label_names = list(label_map.values())
|
|
@@ -17,39 +18,96 @@ cache = {
|
|
| 17 |
'document_image_1_features': None,
|
| 18 |
'document_image_2_features': None,
|
| 19 |
}
|
| 20 |
-
pre_message_style = 'overflow:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
def similarity_fn(document_image_1: Image.Image, document_image_2: Image.Image,
|
| 23 |
message = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
try:
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
if document_image_1_hash == cache['document_image_1_hash']:
|
| 29 |
-
document_image_1_features = cache['document_image_1_features']
|
| 30 |
else:
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
cache['document_image_1_features'] = document_image_1_features
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
except Exception as e:
|
| 51 |
message = f'<pre style="{pre_message_style}">{traceback.format_exc()}<pre>'
|
| 52 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
def load_image(filename, page = 0):
|
| 55 |
try:
|
|
@@ -83,7 +141,7 @@ def document_view(document_number: int):
|
|
| 83 |
document = gr.Image(type="pil", label=f"Document {document_number}", visible=False)
|
| 84 |
document_error_message = gr.HTML(label="Error Message", visible=False)
|
| 85 |
document_preview = gr.UploadButton(
|
| 86 |
-
"
|
| 87 |
file_types=["image", ".pdf"],
|
| 88 |
file_count="single")
|
| 89 |
with gr.Tab("From URL", id=1):
|
|
@@ -114,7 +172,7 @@ def app(*, model_path, config_path, debug = False):
|
|
| 114 |
image { max-height="86vh" !important; }
|
| 115 |
.center { display: flex; flex: 1 1 auto; align-items: center; align-content: center; justify-content: center; justify-items: center; }
|
| 116 |
.hr { width: 100%; display: block; padding: 0; margin: 0; background: gray; height: 4px; border: none; }
|
| 117 |
-
|
| 118 |
with gr.Blocks(title=title, css=css) as app:
|
| 119 |
with gr.Row():
|
| 120 |
gr.HTML(value=description, elem_classes=['center'])
|
|
@@ -126,15 +184,25 @@ def app(*, model_path, config_path, debug = False):
|
|
| 126 |
gr.HTML('<hr/>', elem_classes=['hr'])
|
| 127 |
with gr.Row(elem_classes=['center']):
|
| 128 |
with gr.Column():
|
| 129 |
-
submit = gr.Button(value="Similarity", variant="primary")
|
| 130 |
-
reset = gr.Button(value="Reset", variant="secondary")
|
| 131 |
with gr.Column():
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
return app.launch(debug=debug)
|
|
|
|
| 7 |
from utils.get_features import get_features
|
| 8 |
from imagehash import average_hash
|
| 9 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 10 |
+
from utils.visualize_bboxes_on_image import visualize_bboxes_on_image
|
| 11 |
|
| 12 |
label_map = {0: 'Caption', 1: 'Footnote', 2: 'Formula', 3: 'List-item', 4: 'Page-footer', 5: 'Page-header', 6: 'Picture', 7: 'Section-header', 8: 'Table', 9: 'Text', 10: 'Title'}
|
| 13 |
label_names = list(label_map.values())
|
|
|
|
| 18 |
'document_image_1_features': None,
|
| 19 |
'document_image_2_features': None,
|
| 20 |
}
|
| 21 |
+
pre_message_style = 'overflow:auto;border:2px solid pink;padding:4px;border-radius:4px;'
|
| 22 |
+
visualize_bboxes_on_image_kwargs = {
|
| 23 |
+
'label_text_color': 'white',
|
| 24 |
+
'label_rectangle_color': 'black',
|
| 25 |
+
'label_text_size': 12,
|
| 26 |
+
'label_text_padding': 3,
|
| 27 |
+
'label_rectangle_left_margin': 0,
|
| 28 |
+
'label_rectangle_top_margin': 0
|
| 29 |
+
}
|
| 30 |
+
vectors_types = ['vectors', 'weighted_vectors', 'reduced_vectors', 'reduced_weighted_vectors']
|
| 31 |
+
|
| 32 |
+
annotation_key = 'is_annotated_document_image'
|
| 33 |
+
annotation_original_image_key = 'original_image'
|
| 34 |
+
def annotate_document_image(document_image: Image.Image, original_document_image: Image.Image):
|
| 35 |
+
document_image.info.update({
|
| 36 |
+
annotation_key: True,
|
| 37 |
+
annotation_original_image_key: original_document_image
|
| 38 |
+
})
|
| 39 |
+
return document_image
|
| 40 |
+
|
| 41 |
+
def get_original_document_image(document_image: Image.Image):
|
| 42 |
+
if document_image.info.get(annotation_key) == True:
|
| 43 |
+
return document_image.info.get(annotation_original_image_key)
|
| 44 |
+
return document_image
|
| 45 |
|
| 46 |
+
def similarity_fn(model: lp.Detectron2LayoutModel, document_image_1: Image.Image, document_image_2: Image.Image, vectors_type: str):
|
| 47 |
message = None
|
| 48 |
+
annotations = {
|
| 49 |
+
'predicted_bboxes': 'predicted_bboxes' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_bboxes',
|
| 50 |
+
'predicted_scores': 'predicted_scores' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_scores',
|
| 51 |
+
'predicted_labels': 'predicted_labels' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_labels',
|
| 52 |
+
}
|
| 53 |
+
show_vectors_type = False
|
| 54 |
try:
|
| 55 |
+
if document_image_1 is None or document_image_2 is None:
|
| 56 |
+
message = f'<pre style="{pre_message_style}">Please load both the documents to compare.<pre>'
|
|
|
|
|
|
|
|
|
|
| 57 |
else:
|
| 58 |
+
document_image_1 = get_original_document_image(document_image_1)
|
| 59 |
+
document_image_2 = get_original_document_image(document_image_2)
|
|
|
|
| 60 |
|
| 61 |
+
document_image_1_hash = str(average_hash(document_image_1))
|
| 62 |
+
document_image_2_hash = str(average_hash(document_image_2))
|
| 63 |
+
|
| 64 |
+
if document_image_1_hash == cache['document_image_1_hash']:
|
| 65 |
+
document_image_1_features = cache['document_image_1_features']
|
| 66 |
+
else:
|
| 67 |
+
document_image_1_features = get_features(document_image_1, model, label_names)
|
| 68 |
+
cache['document_image_1_hash'] = document_image_1_hash
|
| 69 |
+
cache['document_image_1_features'] = document_image_1_features
|
| 70 |
+
|
| 71 |
+
if document_image_2_hash == cache['document_image_2_hash']:
|
| 72 |
+
document_image_2_features = cache['document_image_2_features']
|
| 73 |
+
else:
|
| 74 |
+
document_image_2_features = get_features(document_image_2, model, label_names)
|
| 75 |
+
cache['document_image_2_hash'] = document_image_2_hash
|
| 76 |
+
cache['document_image_2_features'] = document_image_2_features
|
| 77 |
|
| 78 |
+
[[similarity]] = cosine_similarity(
|
| 79 |
+
[
|
| 80 |
+
cache['document_image_1_features'][vectors_type]
|
| 81 |
+
],
|
| 82 |
+
[
|
| 83 |
+
cache['document_image_2_features'][vectors_type]
|
| 84 |
+
])
|
| 85 |
+
message = f'<pre style="{pre_message_style}">Similarity between the two documents is: {round(similarity, 4)}<pre>'
|
| 86 |
+
annotated_document_image_1 = visualize_bboxes_on_image(
|
| 87 |
+
image = document_image_1,
|
| 88 |
+
bboxes = cache['document_image_1_features'][annotations['predicted_bboxes']],
|
| 89 |
+
titles = [f'{label}, score:{round(score, 2)}' for label, score in zip(
|
| 90 |
+
cache['document_image_1_features'][annotations['predicted_labels']],
|
| 91 |
+
cache['document_image_1_features'][annotations['predicted_scores']])],
|
| 92 |
+
**visualize_bboxes_on_image_kwargs)
|
| 93 |
+
annotated_document_image_2 = visualize_bboxes_on_image(
|
| 94 |
+
image = document_image_2,
|
| 95 |
+
bboxes = cache['document_image_2_features'][annotations['predicted_bboxes']],
|
| 96 |
+
titles = [f'{label}, score:{score}' for label, score in zip(
|
| 97 |
+
cache['document_image_2_features'][annotations['predicted_labels']],
|
| 98 |
+
cache['document_image_2_features'][annotations['predicted_scores']])],
|
| 99 |
+
**visualize_bboxes_on_image_kwargs)
|
| 100 |
+
show_vectors_type = True
|
| 101 |
+
document_image_1 = annotate_document_image(annotated_document_image_1, document_image_1)
|
| 102 |
+
document_image_2 = annotate_document_image(annotated_document_image_2, document_image_2)
|
| 103 |
except Exception as e:
|
| 104 |
message = f'<pre style="{pre_message_style}">{traceback.format_exc()}<pre>'
|
| 105 |
+
return [
|
| 106 |
+
gr.HTML(message, visible=True),
|
| 107 |
+
document_image_1,
|
| 108 |
+
document_image_2,
|
| 109 |
+
gr.Dropdown(visible=show_vectors_type)
|
| 110 |
+
]
|
| 111 |
|
| 112 |
def load_image(filename, page = 0):
|
| 113 |
try:
|
|
|
|
| 141 |
document = gr.Image(type="pil", label=f"Document {document_number}", visible=False)
|
| 142 |
document_error_message = gr.HTML(label="Error Message", visible=False)
|
| 143 |
document_preview = gr.UploadButton(
|
| 144 |
+
"Upload PDF or Document Image",
|
| 145 |
file_types=["image", ".pdf"],
|
| 146 |
file_count="single")
|
| 147 |
with gr.Tab("From URL", id=1):
|
|
|
|
| 172 |
image { max-height="86vh" !important; }
|
| 173 |
.center { display: flex; flex: 1 1 auto; align-items: center; align-content: center; justify-content: center; justify-items: center; }
|
| 174 |
.hr { width: 100%; display: block; padding: 0; margin: 0; background: gray; height: 4px; border: none; }
|
| 175 |
+
'''
|
| 176 |
with gr.Blocks(title=title, css=css) as app:
|
| 177 |
with gr.Row():
|
| 178 |
gr.HTML(value=description, elem_classes=['center'])
|
|
|
|
| 184 |
gr.HTML('<hr/>', elem_classes=['hr'])
|
| 185 |
with gr.Row(elem_classes=['center']):
|
| 186 |
with gr.Column():
|
| 187 |
+
submit = gr.Button(value="Get Similarity", variant="primary")
|
|
|
|
| 188 |
with gr.Column():
|
| 189 |
+
vectors_type = gr.Dropdown(
|
| 190 |
+
choices = vectors_types,
|
| 191 |
+
value = vectors_types[0],
|
| 192 |
+
visible = False,
|
| 193 |
+
label = "Vectors Type",
|
| 194 |
+
info = "Select the Vectors Type to use for Similarity Calculation")
|
| 195 |
+
similarity_output = gr.HTML(label="Similarity Score", visible=False)
|
| 196 |
+
reset = gr.Button(value="Reset", variant="secondary")
|
| 197 |
+
kwargs = {
|
| 198 |
+
'fn': lambda document_1_image, document_2_image, vectors_type: similarity_fn(
|
| 199 |
+
model,
|
| 200 |
+
document_1_image,
|
| 201 |
+
document_2_image,
|
| 202 |
+
vectors_type),
|
| 203 |
+
'inputs': [document_1_image, document_2_image, vectors_type],
|
| 204 |
+
'outputs': [similarity_output, document_1_image, document_2_image, vectors_type]
|
| 205 |
+
}
|
| 206 |
+
submit.click(**kwargs)
|
| 207 |
+
vectors_type.change(**kwargs)
|
| 208 |
return app.launch(debug=debug)
|
utils/get_features.py
CHANGED
|
@@ -31,10 +31,6 @@ def get_vectors(*,
|
|
| 31 |
'''
|
| 32 |
index_of_jaccard_index = jaccard_indexes.argmax() if not weighted_jaccard_index else np.multiply(jaccard_indexes, predicted_scores).argmax()
|
| 33 |
jaccard_index = jaccard_indexes[index_of_jaccard_index]
|
| 34 |
-
print(index_of_jaccard_index)
|
| 35 |
-
print(jaccard_index)
|
| 36 |
-
print(predicted_labels)
|
| 37 |
-
print(labels_nonce)
|
| 38 |
jaccard_index_bbox_label__nonce = labels_nonce[predicted_labels[index_of_jaccard_index]]
|
| 39 |
jaccard_index_bbox_score = predicted_scores[index_of_jaccard_index]
|
| 40 |
vector = region_nonce * jaccard_index * jaccard_index_bbox_label__nonce * jaccard_index_bbox_score
|
|
|
|
| 31 |
'''
|
| 32 |
index_of_jaccard_index = jaccard_indexes.argmax() if not weighted_jaccard_index else np.multiply(jaccard_indexes, predicted_scores).argmax()
|
| 33 |
jaccard_index = jaccard_indexes[index_of_jaccard_index]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
jaccard_index_bbox_label__nonce = labels_nonce[predicted_labels[index_of_jaccard_index]]
|
| 35 |
jaccard_index_bbox_score = predicted_scores[index_of_jaccard_index]
|
| 36 |
vector = region_nonce * jaccard_index * jaccard_index_bbox_label__nonce * jaccard_index_bbox_score
|