Charles Kabui commited on
Commit
e5734d4
·
1 Parent(s): 21e70d3

starting colclutions

Browse files
Files changed (1) hide show
  1. analysis.ipynb +83 -0
analysis.ipynb CHANGED
@@ -232,6 +232,75 @@
232
  " ax.set_title(column)"
233
  ]
234
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235
  {
236
  "cell_type": "markdown",
237
  "metadata": {},
@@ -428,6 +497,20 @@
428
  " width_parts=100,\n",
429
  " height_parts=100)"
430
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431
  }
432
  ],
433
  "metadata": {
 
232
  " ax.set_title(column)"
233
  ]
234
  },
235
+ {
236
+ "cell_type": "code",
237
+ "execution_count": null,
238
+ "metadata": {},
239
+ "outputs": [],
240
+ "source": [
241
+ "def correlation_fn(index: int):\n",
242
+ " vectors = vectors_df.loc[index, 'vectors']\n",
243
+ " weighted_vectors = vectors_df.loc[index, 'weighted_vectors']\n",
244
+ " reduced_vectors = vectors_df.loc[index, 'reduced_vectors']\n",
245
+ " reduced_weighted_vectors = vectors_df.loc[index, 'reduced_weighted_vectors']\n",
246
+ " return {\n",
247
+ " 'vectors vs weighted_vectors': pearsonr(vectors, weighted_vectors),\n",
248
+ " 'vectors vs reduced_vectors': pearsonr(vectors, reduced_vectors),\n",
249
+ " 'vectors vs reduced_weighted_vectors': pearsonr(vectors, reduced_weighted_vectors),\n",
250
+ " 'weighted_vectors vs reduced_vectors': pearsonr(weighted_vectors, reduced_vectors),\n",
251
+ " 'weighted_vectors vs reduced_weighted_vectors': pearsonr(weighted_vectors, reduced_weighted_vectors),\n",
252
+ " 'reduced_vectors vs reduced_weighted_vectors': pearsonr(reduced_vectors, reduced_weighted_vectors),\n",
253
+ " }\n",
254
+ "\n",
255
+ "correlation_results_2 = [correlation_fn(i) for i in tqdm.tqdm(range(len(vectors_df)))]"
256
+ ]
257
+ },
258
+ {
259
+ "cell_type": "code",
260
+ "execution_count": null,
261
+ "metadata": {},
262
+ "outputs": [],
263
+ "source": [
264
+ "import matplotlib.pyplot as plt\n",
265
+ "\n",
266
+ "columns = list(correlation_results_2[0].keys())\n",
267
+ "fig, axes = plt.subplots(6, 2, figsize=(24, 24))\n",
268
+ "axes = axes.flatten()\n",
269
+ "for i, column in enumerate(columns):\n",
270
+ " ax = axes[i]\n",
271
+ " corr = [j[column][0] for j in correlation_results_2]\n",
272
+ " pvalues = [j[column][1] for j in correlation_results_2]\n",
273
+ " # ax.hist([j[column][0] for j in correlation_results_2], bins=100)\n",
274
+ " ax.plot(range(0, len(corr)), corr, label='Correlation', color='blue')\n",
275
+ " # ax.plot(range(0, len(pvalues)), pvalues, label='pvalues', color='red')\n",
276
+ " ax.set_title(column)"
277
+ ]
278
+ },
279
+ {
280
+ "cell_type": "code",
281
+ "execution_count": null,
282
+ "metadata": {},
283
+ "outputs": [],
284
+ "source": [
285
+ "import matplotlib.pyplot as plt\n",
286
+ "\n",
287
+ "columns = list(correlation_results_2[0].keys())\n",
288
+ "fig, axes = plt.subplots(3, 2, figsize=(24, 24))\n",
289
+ "axes = axes.flatten()\n",
290
+ "for i, column in enumerate(columns):\n",
291
+ " ax = axes[i]\n",
292
+ " corr = [j[column][0] for j in correlation_results_2]\n",
293
+ " pvalues = [j[column][1] for j in correlation_results_2]\n",
294
+ " ax.plot(range(0, len(corr)), corr, label='correlation', color='blue')\n",
295
+ " ax.plot(range(0, len(pvalues)), pvalues, label='p-value', color='red')\n",
296
+ " ax.legend(bbox_to_anchor=(1, 0.1), loc='lower right')\n",
297
+ " ax.set_ylabel('correlation & p-value')\n",
298
+ " ax.set_xlabel(f'images - {column}')\n",
299
+ " ax.set_title(column)\n",
300
+ "\n",
301
+ "fig.savefig('/Users/charleskabue/Downloads/vector-correlations.png')"
302
+ ]
303
+ },
304
  {
305
  "cell_type": "markdown",
306
  "metadata": {},
 
497
  " width_parts=100,\n",
498
  " height_parts=100)"
499
  ]
500
+ },
501
+ {
502
+ "cell_type": "markdown",
503
+ "metadata": {},
504
+ "source": [
505
+ "<hr/>"
506
+ ]
507
+ },
508
+ {
509
+ "cell_type": "code",
510
+ "execution_count": null,
511
+ "metadata": {},
512
+ "outputs": [],
513
+ "source": []
514
  }
515
  ],
516
  "metadata": {