RE_UPLOAD-REBUILD-RESTART
Browse files
main.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import traceback
|
2 |
+
import gradio as gr
|
3 |
+
from utils.get_RGB_image import get_RGB_image, is_online_file, steam_online_file
|
4 |
+
import layoutparser as lp
|
5 |
+
from PIL import Image
|
6 |
+
from utils.get_features import get_features
|
7 |
+
from imagehash import average_hash
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
from utils.visualize_bboxes_on_image import visualize_bboxes_on_image
|
10 |
+
import fitz
|
11 |
+
|
12 |
+
label_map = {0: 'Caption', 1: 'Footnote', 2: 'Formula', 3: 'List-item', 4: 'Page-footer',
|
13 |
+
5: 'Page-header', 6: 'Picture', 7: 'Section-header', 8: 'Table', 9: 'Text', 10: 'Title'}
|
14 |
+
label_names = list(label_map.values())
|
15 |
+
color_map = {'Caption': '#FF0000', 'Footnote': '#00FF00', 'Formula': '#0000FF', 'List-item': '#FF00FF', 'Page-footer': '#FFFF00',
|
16 |
+
'Page-header': '#000000', 'Picture': '#FFFFFF', 'Section-header': '#40E0D0', 'Table': '#F28030', 'Text': '#7F00FF', 'Title': '#C0C0C0'}
|
17 |
+
cache = {
|
18 |
+
'output_document_image_1_hash': None,
|
19 |
+
'output_document_image_2_hash': None,
|
20 |
+
'document_image_1_features': None,
|
21 |
+
'document_image_2_features': None,
|
22 |
+
'original_document_image_1': None,
|
23 |
+
'original_document_image_2': None
|
24 |
+
}
|
25 |
+
pre_message_style = 'border:2px solid pink;padding:4px;border-radius:4px;font-size: 16px;font-weight: 700;background-image: linear-gradient(to bottom right, #e0e619, #ffffff, #FF77CC, rgb(255, 122, 89));'
|
26 |
+
visualize_bboxes_on_image_kwargs = {
|
27 |
+
'label_text_color': 'white',
|
28 |
+
'label_fill_color': 'black',
|
29 |
+
'label_text_size': 12,
|
30 |
+
'label_text_padding': 3,
|
31 |
+
'label_rectangle_left_margin': 0,
|
32 |
+
'label_rectangle_top_margin': 0
|
33 |
+
}
|
34 |
+
vectors_types = ['vectors', 'weighted_vectors',
|
35 |
+
'reduced_vectors', 'reduced_weighted_vectors']
|
36 |
+
|
37 |
+
|
38 |
+
def similarity_fn(model: lp.Detectron2LayoutModel, document_image_1: Image.Image, document_image_2: Image.Image, vectors_type: str):
|
39 |
+
message = None
|
40 |
+
annotations = {
|
41 |
+
'predicted_bboxes': 'predicted_bboxes' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_bboxes',
|
42 |
+
'predicted_scores': 'predicted_scores' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_scores',
|
43 |
+
'predicted_labels': 'predicted_labels' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_labels',
|
44 |
+
}
|
45 |
+
show_vectors_type = False
|
46 |
+
try:
|
47 |
+
if document_image_1 is None or document_image_2 is None:
|
48 |
+
message = 'Please load both the documents to compare.'
|
49 |
+
gr.Info(message)
|
50 |
+
else:
|
51 |
+
input_document_image_1_hash = str(average_hash(document_image_1))
|
52 |
+
input_document_image_2_hash = str(average_hash(document_image_2))
|
53 |
+
|
54 |
+
if input_document_image_1_hash == cache['output_document_image_1_hash']:
|
55 |
+
document_image_1_features = cache['document_image_1_features']
|
56 |
+
document_image_1 = cache['original_document_image_1']
|
57 |
+
else:
|
58 |
+
gr.Info('Generating features for document 1')
|
59 |
+
document_image_1_features = get_features(
|
60 |
+
document_image_1, model, label_names)
|
61 |
+
cache['document_image_1_features'] = document_image_1_features
|
62 |
+
cache['original_document_image_1'] = document_image_1
|
63 |
+
|
64 |
+
if input_document_image_2_hash == cache['output_document_image_2_hash']:
|
65 |
+
document_image_2_features = cache['document_image_2_features']
|
66 |
+
document_image_2 = cache['original_document_image_2']
|
67 |
+
else:
|
68 |
+
gr.Info('Generating features for document 2')
|
69 |
+
document_image_2_features = get_features(
|
70 |
+
document_image_2, model, label_names)
|
71 |
+
cache['document_image_2_features'] = document_image_2_features
|
72 |
+
cache['original_document_image_2'] = document_image_2
|
73 |
+
|
74 |
+
gr.Info('Calculating similarity')
|
75 |
+
[[similarity]] = cosine_similarity(
|
76 |
+
[
|
77 |
+
cache['document_image_1_features'][vectors_type]
|
78 |
+
],
|
79 |
+
[
|
80 |
+
cache['document_image_2_features'][vectors_type]
|
81 |
+
])
|
82 |
+
message = f'Similarity between the two documents is: {round(similarity, 4)}'
|
83 |
+
gr.Info(message)
|
84 |
+
gr.Info('Visualizing the bounding boxes for the predicted layout elements on the documents.')
|
85 |
+
document_image_1 = visualize_bboxes_on_image(
|
86 |
+
image=document_image_1,
|
87 |
+
bboxes=cache['document_image_1_features'][annotations['predicted_bboxes']],
|
88 |
+
labels=[f'{label}, score:{round(score, 2)}' for label, score in zip(
|
89 |
+
cache['document_image_1_features'][annotations['predicted_labels']],
|
90 |
+
cache['document_image_1_features'][annotations['predicted_scores']])],
|
91 |
+
bbox_outline_color=[
|
92 |
+
color_map[label] for label in cache['document_image_1_features'][annotations['predicted_labels']]],
|
93 |
+
bbox_fill_color=[
|
94 |
+
(color_map[label], 50) for label in cache['document_image_1_features'][annotations['predicted_labels']]],
|
95 |
+
**visualize_bboxes_on_image_kwargs)
|
96 |
+
document_image_2 = visualize_bboxes_on_image(
|
97 |
+
image=document_image_2,
|
98 |
+
bboxes=cache['document_image_2_features'][annotations['predicted_bboxes']],
|
99 |
+
labels=[f'{label}, score:{round(score, 2)}' for label, score in zip(
|
100 |
+
cache['document_image_2_features'][annotations['predicted_labels']],
|
101 |
+
cache['document_image_2_features'][annotations['predicted_scores']])],
|
102 |
+
bbox_outline_color=[
|
103 |
+
color_map[label] for label in cache['document_image_2_features'][annotations['predicted_labels']]],
|
104 |
+
bbox_fill_color=[
|
105 |
+
(color_map[label], 50) for label in cache['document_image_2_features'][annotations['predicted_labels']]],
|
106 |
+
**visualize_bboxes_on_image_kwargs)
|
107 |
+
|
108 |
+
cache['output_document_image_1_hash'] = str(
|
109 |
+
average_hash(document_image_1))
|
110 |
+
cache['output_document_image_2_hash'] = str(
|
111 |
+
average_hash(document_image_2))
|
112 |
+
|
113 |
+
show_vectors_type = True
|
114 |
+
except Exception as e:
|
115 |
+
message = f'<pre style="overflow:auto;">{traceback.format_exc()}</pre>'
|
116 |
+
gr.Info(message)
|
117 |
+
return [
|
118 |
+
gr.HTML(f'<div style="{pre_message_style}">{message}</div>', visible=True),
|
119 |
+
document_image_1,
|
120 |
+
document_image_2,
|
121 |
+
gr.Dropdown(visible=show_vectors_type)
|
122 |
+
]
|
123 |
+
|
124 |
+
|
125 |
+
def load_image(filename, page=0):
|
126 |
+
try:
|
127 |
+
image = None
|
128 |
+
first_error = None
|
129 |
+
try:
|
130 |
+
if (is_online_file(filename)):
|
131 |
+
pixmap = fitz.open("pdf", steam_online_file(filename))[page].get_pixmap()
|
132 |
+
else:
|
133 |
+
pixmap = fitz.open(filename)[page].get_pixmap()
|
134 |
+
image = Image.frombytes("RGB", [pixmap.width, pixmap.height], pixmap.samples)
|
135 |
+
except Exception as e:
|
136 |
+
first_error = e
|
137 |
+
image = get_RGB_image(filename)
|
138 |
+
return [
|
139 |
+
image,
|
140 |
+
None
|
141 |
+
]
|
142 |
+
except Exception as second_error:
|
143 |
+
error = f'{traceback.format_exc()}\n\nFirst Error:\n{first_error}\n\nSecond Error:\n{second_error}'
|
144 |
+
return [None, gr.HTML(value=error, visible=True)]
|
145 |
+
|
146 |
+
|
147 |
+
def preview_url(url, page=0):
|
148 |
+
[image, error] = load_image(url, page=page)
|
149 |
+
if image:
|
150 |
+
return [gr.Tabs(selected=0), image, error]
|
151 |
+
else:
|
152 |
+
return [gr.Tabs(selected=1), image, error]
|
153 |
+
|
154 |
+
|
155 |
+
def document_view(document_number: int, examples: list[str] = []):
|
156 |
+
gr.HTML(value=f'<h4>Load the {"first" if document_number == 1 else "second"} PDF or Document Image</h4>', elem_classes=[
|
157 |
+
'center'])
|
158 |
+
gr.HTML(value=f'<p>Click the button below to upload Upload PDF or Document Image or cleck the URL tab to add using link.</p>', elem_classes=[
|
159 |
+
'center'])
|
160 |
+
with gr.Tabs() as document_tabs:
|
161 |
+
with gr.Tab("From Image", id=0):
|
162 |
+
document = gr.Image(
|
163 |
+
type="pil", label=f"Document {document_number}", visible=False, interactive=False, show_download_button=True)
|
164 |
+
document_error_message = gr.HTML(
|
165 |
+
label="Error Message", visible=False)
|
166 |
+
document_preview = gr.UploadButton(
|
167 |
+
label="Upload PDF or Document Image",
|
168 |
+
file_types=["image", ".pdf"],
|
169 |
+
file_count="single")
|
170 |
+
with gr.Tab("From URL", id=1):
|
171 |
+
document_url = gr.Textbox(
|
172 |
+
label=f"Document {document_number} URL",
|
173 |
+
info="Paste a Link/URL to PDF or Document Image",
|
174 |
+
placeholder="https://datasets-server.huggingface.co/.../image.jpg")
|
175 |
+
document_url_error_message = gr.HTML(
|
176 |
+
label="Error Message", visible=False)
|
177 |
+
document_url_preview = gr.Button(
|
178 |
+
value="Preview Link Document", variant="secondary")
|
179 |
+
if len(examples) > 0:
|
180 |
+
gr.Examples(
|
181 |
+
examples=examples,
|
182 |
+
inputs=document,
|
183 |
+
label='Select any of these test document images')
|
184 |
+
document_preview.upload(
|
185 |
+
fn=lambda file: load_image(file.name),
|
186 |
+
inputs=[document_preview],
|
187 |
+
outputs=[document, document_error_message])
|
188 |
+
document_url_preview.click(
|
189 |
+
fn=preview_url,
|
190 |
+
inputs=[document_url],
|
191 |
+
outputs=[document_tabs, document, document_url_error_message])
|
192 |
+
document.change(
|
193 |
+
fn = lambda image: gr.Image(value=image, visible=True) if image else gr.Image(value=None, visible=False),
|
194 |
+
inputs = [document],
|
195 |
+
outputs = [document])
|
196 |
+
return document
|
197 |
+
|
198 |
+
|
199 |
+
def app(*, model_path:str, config_path:str, examples: list[str], debug=False):
|
200 |
+
model: lp.Detectron2LayoutModel = lp.Detectron2LayoutModel(
|
201 |
+
config_path=config_path,
|
202 |
+
model_path=model_path,
|
203 |
+
label_map=label_map)
|
204 |
+
title = 'Document Similarity Search Using Visual Layout Features'
|
205 |
+
description = f"<h2>{title}<h2>"
|
206 |
+
css = '''
|
207 |
+
image { max-height="86vh" !important; }
|
208 |
+
.center { display: flex; flex: 1 1 auto; align-items: center; align-content: center; justify-content: center; justify-items: center; }
|
209 |
+
.hr { width: 100%; display: block; padding: 0; margin: 0; background: gray; height: 4px; border: none; }
|
210 |
+
'''
|
211 |
+
with gr.Blocks(title=title, css=css) as interface:
|
212 |
+
with gr.Row():
|
213 |
+
gr.HTML(value=description, elem_classes=['center'])
|
214 |
+
with gr.Row(equal_height=False):
|
215 |
+
with gr.Column():
|
216 |
+
document_1_image = document_view(1, examples)
|
217 |
+
with gr.Column():
|
218 |
+
document_2_image = document_view(2, examples)
|
219 |
+
gr.HTML('<hr/>', elem_classes=['hr'])
|
220 |
+
with gr.Row(elem_classes=['center']):
|
221 |
+
with gr.Column():
|
222 |
+
submit = gr.Button(value="Get Similarity", variant="primary")
|
223 |
+
with gr.Column():
|
224 |
+
vectors_type = gr.Dropdown(
|
225 |
+
choices=vectors_types,
|
226 |
+
value=vectors_types[0],
|
227 |
+
visible=False,
|
228 |
+
label="Vectors Type",
|
229 |
+
info="Select the Vectors Type to use for Similarity Calculation")
|
230 |
+
similarity_output = gr.HTML(
|
231 |
+
label="Similarity Score", visible=False)
|
232 |
+
kwargs = {
|
233 |
+
'fn': lambda document_1_image, document_2_image, vectors_type: similarity_fn(
|
234 |
+
model,
|
235 |
+
document_1_image,
|
236 |
+
document_2_image,
|
237 |
+
vectors_type),
|
238 |
+
'inputs': [document_1_image, document_2_image, vectors_type],
|
239 |
+
'outputs': [similarity_output, document_1_image, document_2_image, vectors_type]
|
240 |
+
}
|
241 |
+
submit.click(**kwargs)
|
242 |
+
vectors_type.change(**kwargs)
|
243 |
+
return interface.launch(debug=debug)
|