Spaces:
Runtime error
Runtime error
| from typing import * | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import numpy as np | |
| from ...modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32 | |
| from ...modules import sparse as sp | |
| from .base import SparseTransformerBase | |
| from ...representations import MeshExtractResult | |
| from ...representations.mesh import SparseFeatures2Mesh | |
| class SparseSubdivideBlock3d(nn.Module): | |
| """ | |
| A 3D subdivide block that can subdivide the sparse tensor. | |
| Args: | |
| channels: channels in the inputs and outputs. | |
| out_channels: if specified, the number of output channels. | |
| num_groups: the number of groups for the group norm. | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| resolution: int, | |
| out_channels: Optional[int] = None, | |
| num_groups: int = 32 | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.resolution = resolution | |
| self.out_resolution = resolution * 2 | |
| self.out_channels = out_channels or channels | |
| self.act_layers = nn.Sequential( | |
| sp.SparseGroupNorm32(num_groups, channels), | |
| sp.SparseSiLU() | |
| ) | |
| self.sub = sp.SparseSubdivide() | |
| self.out_layers = nn.Sequential( | |
| sp.SparseConv3d(channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}"), | |
| sp.SparseGroupNorm32(num_groups, self.out_channels), | |
| sp.SparseSiLU(), | |
| zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}")), | |
| ) | |
| if self.out_channels == channels: | |
| self.skip_connection = nn.Identity() | |
| else: | |
| self.skip_connection = sp.SparseConv3d(channels, self.out_channels, 1, indice_key=f"res_{self.out_resolution}") | |
| def forward(self, x: sp.SparseTensor) -> sp.SparseTensor: | |
| """ | |
| Apply the block to a Tensor, conditioned on a timestep embedding. | |
| Args: | |
| x: an [N x C x ...] Tensor of features. | |
| Returns: | |
| an [N x C x ...] Tensor of outputs. | |
| """ | |
| h = self.act_layers(x) | |
| h = self.sub(h) | |
| x = self.sub(x) | |
| h = self.out_layers(h) | |
| h = h + self.skip_connection(x) | |
| return h | |
| class SLatMeshDecoder(SparseTransformerBase): | |
| def __init__( | |
| self, | |
| resolution: int, | |
| model_channels: int, | |
| latent_channels: int, | |
| num_blocks: int, | |
| num_heads: Optional[int] = None, | |
| num_head_channels: Optional[int] = 64, | |
| mlp_ratio: float = 4, | |
| attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin", | |
| window_size: int = 8, | |
| pe_mode: Literal["ape", "rope"] = "ape", | |
| use_fp16: bool = False, | |
| use_checkpoint: bool = False, | |
| qk_rms_norm: bool = False, | |
| representation_config: dict = None, | |
| ): | |
| super().__init__( | |
| in_channels=latent_channels, | |
| model_channels=model_channels, | |
| num_blocks=num_blocks, | |
| num_heads=num_heads, | |
| num_head_channels=num_head_channels, | |
| mlp_ratio=mlp_ratio, | |
| attn_mode=attn_mode, | |
| window_size=window_size, | |
| pe_mode=pe_mode, | |
| use_fp16=use_fp16, | |
| use_checkpoint=use_checkpoint, | |
| qk_rms_norm=qk_rms_norm, | |
| ) | |
| self.resolution = resolution | |
| self.rep_config = representation_config | |
| self.mesh_extractor = SparseFeatures2Mesh(res=self.resolution*4, use_color=self.rep_config.get('use_color', False)) | |
| self.out_channels = self.mesh_extractor.feats_channels | |
| self.upsample = nn.ModuleList([ | |
| SparseSubdivideBlock3d( | |
| channels=model_channels, | |
| resolution=resolution, | |
| out_channels=model_channels // 4 | |
| ), | |
| SparseSubdivideBlock3d( | |
| channels=model_channels // 4, | |
| resolution=resolution * 2, | |
| out_channels=model_channels // 8 | |
| ) | |
| ]) | |
| self.out_layer = sp.SparseLinear(model_channels // 8, self.out_channels) | |
| self.initialize_weights() | |
| if use_fp16: | |
| self.convert_to_fp16() | |
| def initialize_weights(self) -> None: | |
| super().initialize_weights() | |
| # Zero-out output layers: | |
| nn.init.constant_(self.out_layer.weight, 0) | |
| nn.init.constant_(self.out_layer.bias, 0) | |
| def convert_to_fp16(self) -> None: | |
| """ | |
| Convert the torso of the model to float16. | |
| """ | |
| super().convert_to_fp16() | |
| self.upsample.apply(convert_module_to_f16) | |
| def convert_to_fp32(self) -> None: | |
| """ | |
| Convert the torso of the model to float32. | |
| """ | |
| super().convert_to_fp32() | |
| self.upsample.apply(convert_module_to_f32) | |
| def to_representation(self, x: sp.SparseTensor) -> List[MeshExtractResult]: | |
| """ | |
| Convert a batch of network outputs to 3D representations. | |
| Args: | |
| x: The [N x * x C] sparse tensor output by the network. | |
| Returns: | |
| list of representations | |
| """ | |
| ret = [] | |
| for i in range(x.shape[0]): | |
| mesh = self.mesh_extractor(x[i], training=self.training) | |
| ret.append(mesh) | |
| return ret | |
| def forward(self, x: sp.SparseTensor) -> List[MeshExtractResult]: | |
| h = super().forward(x) | |
| for block in self.upsample: | |
| h = block(h) | |
| h = h.type(x.dtype) | |
| h = self.out_layer(h) | |
| return self.to_representation(h) | |