File size: 8,126 Bytes
f202d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1fd428
 
f202d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
import torch
import torch.nn.functional as F
import kornia
import numpy as np

def compute_mean_std(tensor, mask=None):
    if mask is not None:
        # Apply mask to the tensor
        masked_tensor = tensor * mask
        mask_sum = mask.sum(dim=[2, 3], keepdim=True)
        mask_sum = torch.clamp(mask_sum, min=1e-6)
        
        mean = torch.nan_to_num(masked_tensor.sum(dim=[2, 3], keepdim=True) / mask_sum)
        std = torch.sqrt(torch.nan_to_num(((masked_tensor - mean) ** 2 * mask).sum(dim=[2, 3], keepdim=True) / mask_sum))
    else:
        mean = tensor.mean(dim=[2, 3], keepdim=True)
        std = tensor.std(dim=[2, 3], keepdim=True)
    return mean, std

def apply_color_match(image, reference, color_space, factor, device='cpu'):
    if image is None or reference is None:
        return None
        
    # Convert to torch tensors and normalize
    image = torch.from_numpy(image).float() / 255.0
    reference = torch.from_numpy(reference).float() / 255.0
    
    # Add batch dimension and rearrange to BCHW
    image = image.unsqueeze(0).permute(0, 3, 1, 2)
    reference = reference.unsqueeze(0).permute(0, 3, 1, 2)
    
    # Convert to target color space
    if color_space == "LAB":
        image_conv = kornia.color.rgb_to_lab(image)
        reference_conv = kornia.color.rgb_to_lab(reference)
        back_conversion = kornia.color.lab_to_rgb
    elif color_space == "YCbCr":
        image_conv = kornia.color.rgb_to_ycbcr(image)
        reference_conv = kornia.color.rgb_to_ycbcr(reference)
        back_conversion = kornia.color.ycbcr_to_rgb
    elif color_space == "LUV":
        image_conv = kornia.color.rgb_to_luv(image)
        reference_conv = kornia.color.rgb_to_luv(reference)
        back_conversion = kornia.color.luv_to_rgb
    elif color_space == "YUV":
        image_conv = kornia.color.rgb_to_yuv(image)
        reference_conv = kornia.color.rgb_to_yuv(reference)
        back_conversion = kornia.color.yuv_to_rgb
    elif color_space == "XYZ":
        image_conv = kornia.color.rgb_to_xyz(image)
        reference_conv = kornia.color.rgb_to_xyz(reference)
        back_conversion = kornia.color.xyz_to_rgb
    else:  # RGB
        image_conv = image
        reference_conv = reference
        back_conversion = lambda x: x
    
    # Compute statistics
    reference_mean, reference_std = compute_mean_std(reference_conv)
    image_mean, image_std = compute_mean_std(image_conv)
    
    # Apply color matching
    matched = torch.nan_to_num((image_conv - image_mean) / image_std) * reference_std + reference_mean
    matched = factor * matched + (1 - factor) * image_conv
    
    # Convert back to RGB
    matched = back_conversion(matched)
    
    # Convert back to HWC format and to uint8
    output = matched.squeeze(0).permute(1, 2, 0)
    output = (output.clamp(0, 1).numpy() * 255).astype(np.uint8)
    
    return output

def analyze_color_statistics(image):
    l, a, b = kornia.color.rgb_to_lab(image).chunk(3, dim=1)
    mean_l = l.mean()
    std_l = l.std()
    mean_a = a.mean()
    mean_b = b.mean()
    std_ab = torch.sqrt(a.var() + b.var())
    return mean_l, std_l, mean_a, mean_b, std_ab

def apply_adobe_color_match(image, reference, color_space, luminance_factor, color_intensity_factor, fade_factor, neutralization_factor):
    if image is None or reference is None:
        return None
        
    # Convert to torch tensors and normalize
    image = torch.from_numpy(image).float() / 255.0
    reference = torch.from_numpy(reference).float() / 255.0
    
    # Add batch dimension and rearrange to BCHW
    image = image.unsqueeze(0).permute(0, 3, 1, 2)
    reference = reference.unsqueeze(0).permute(0, 3, 1, 2)
    
    # Analyze color statistics
    source_stats = analyze_color_statistics(reference)
    dest_stats = analyze_color_statistics(image)
    
    # Convert to LAB
    l, a, b = kornia.color.rgb_to_lab(image).chunk(3, dim=1)
    
    # Unpack statistics
    src_mean_l, src_std_l, src_mean_a, src_mean_b, src_std_ab = source_stats
    dest_mean_l, dest_std_l, dest_mean_a, dest_mean_b, dest_std_ab = dest_stats
    
    # Apply transformations
    l_new = (l - dest_mean_l) * (src_std_l / dest_std_l) * luminance_factor + src_mean_l
    
    # Neutralize color cast
    a = a - neutralization_factor * dest_mean_a
    b = b - neutralization_factor * dest_mean_b
    
    # Adjust color intensity
    a_new = a * (src_std_ab / dest_std_ab) * color_intensity_factor
    b_new = b * (src_std_ab / dest_std_ab) * color_intensity_factor
    
    # Combine channels
    lab_new = torch.cat([l_new, a_new, b_new], dim=1)
    
    # Convert back to RGB
    rgb_new = kornia.color.lab_to_rgb(lab_new)
    
    # Apply fade factor
    result = fade_factor * rgb_new + (1 - fade_factor) * image
    
    # Convert back to HWC format and to uint8
    output = result.squeeze(0).permute(1, 2, 0)
    output = (output.clamp(0, 1).numpy() * 255).astype(np.uint8)
    
    return output

def create_color_match_tab():
    with gr.Tab("Color Matching"):
        
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", height=256)
                reference_image = gr.Image(label="Reference Image", height=256)
                
                with gr.Tabs():
                    with gr.Tab("Standard"):
                        color_space = gr.Dropdown(
                            choices=["LAB", "YCbCr", "RGB", "LUV", "YUV", "XYZ"],
                            value="LAB",
                            label="Color Space"
                        )
                        factor = gr.Slider(
                            minimum=0.0,
                            maximum=1.0,
                            value=1.0,
                            step=0.05,
                            label="Factor"
                        )
                        standard_btn = gr.Button("Apply Standard Color Match")
                        
                    with gr.Tab("Adobe Style"):
                        adobe_color_space = gr.Dropdown(
                            choices=["RGB", "LAB"],
                            value="LAB",
                            label="Color Space"
                        )
                        luminance_factor = gr.Slider(
                            minimum=0.0,
                            maximum=2.0,
                            value=1.0,
                            step=0.05,
                            label="Luminance Factor"
                        )
                        color_intensity_factor = gr.Slider(
                            minimum=0.0,
                            maximum=2.0,
                            value=1.0,
                            step=0.05,
                            label="Color Intensity Factor"
                        )
                        fade_factor = gr.Slider(
                            minimum=0.0,
                            maximum=1.0,
                            value=1.0,
                            step=0.05,
                            label="Fade Factor"
                        )
                        neutralization_factor = gr.Slider(
                            minimum=0.0,
                            maximum=1.0,
                            value=0.0,
                            step=0.05,
                            label="Neutralization Factor"
                        )
                        adobe_btn = gr.Button("Apply Adobe Style Color Match")
            
            with gr.Column():
                output_image = gr.Image(label="Color Matched Image")
        
        standard_btn.click(
            fn=apply_color_match,
            inputs=[input_image, reference_image, color_space, factor],
            outputs=output_image
        )
        
        adobe_btn.click(
            fn=apply_adobe_color_match,
            inputs=[
                input_image, reference_image, adobe_color_space,
                luminance_factor, color_intensity_factor, fade_factor, neutralization_factor
            ],
            outputs=output_image
        )