Spaces:
Runtime error
Runtime error
Commit
Β·
f76a568
1
Parent(s):
e538d2e
matte
Browse files- app.py +4 -2
- matte_processor.py +120 -0
app.py
CHANGED
@@ -6,6 +6,7 @@ from color_match_processor import create_color_match_tab
|
|
6 |
from simple_effects_processor import create_effects_tab
|
7 |
from histogram_processor import create_histogram_tab
|
8 |
from blend_processor import create_blend_tab
|
|
|
9 |
|
10 |
with gr.Blocks(title="Image Processing Suite") as demo:
|
11 |
gr.Markdown("# Image Processing Suite")
|
@@ -17,6 +18,7 @@ with gr.Blocks(title="Image Processing Suite") as demo:
|
|
17 |
create_effects_tab()
|
18 |
create_histogram_tab()
|
19 |
create_blend_tab()
|
|
|
20 |
|
21 |
-
|
22 |
-
demo.launch(
|
|
|
6 |
from simple_effects_processor import create_effects_tab
|
7 |
from histogram_processor import create_histogram_tab
|
8 |
from blend_processor import create_blend_tab
|
9 |
+
from matte_processor import create_matte_tab
|
10 |
|
11 |
with gr.Blocks(title="Image Processing Suite") as demo:
|
12 |
gr.Markdown("# Image Processing Suite")
|
|
|
18 |
create_effects_tab()
|
19 |
create_histogram_tab()
|
20 |
create_blend_tab()
|
21 |
+
create_matte_tab() # Add this line
|
22 |
|
23 |
+
if __name__ == "__main__":
|
24 |
+
demo.launch(share=True)
|
matte_processor.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from transformers import VitMatteImageProcessor, VitMatteForImageMatting
|
5 |
+
import math
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
class VITMatteModel:
|
9 |
+
def __init__(self, model, processor):
|
10 |
+
self.model = model
|
11 |
+
self.processor = processor
|
12 |
+
|
13 |
+
def load_VITMatte_model(local_files_only=False):
|
14 |
+
model = VitMatteForImageMatting.from_pretrained("hustvl/vitmatte-small-composition-1k", local_files_only=local_files_only)
|
15 |
+
processor = VitMatteImageProcessor.from_pretrained("hustvl/vitmatte-small-composition-1k", local_files_only=local_files_only)
|
16 |
+
return VITMatteModel(model, processor)
|
17 |
+
|
18 |
+
def generate_VITMatte(image, trimap, local_files_only=False, device="cpu", max_megapixels=2.0):
|
19 |
+
if image is None or trimap is None:
|
20 |
+
return None
|
21 |
+
|
22 |
+
# Convert to proper formats
|
23 |
+
if isinstance(image, np.ndarray):
|
24 |
+
image = Image.fromarray(image)
|
25 |
+
if isinstance(trimap, np.ndarray):
|
26 |
+
trimap = Image.fromarray(trimap)
|
27 |
+
|
28 |
+
if image.mode != 'RGB':
|
29 |
+
image = image.convert('RGB')
|
30 |
+
if trimap.mode != 'L':
|
31 |
+
trimap = trimap.convert('L')
|
32 |
+
|
33 |
+
# Calculate resize if needed
|
34 |
+
max_megapixels *= 1048576
|
35 |
+
width, height = image.size
|
36 |
+
ratio = width / height
|
37 |
+
target_width = math.sqrt(ratio * max_megapixels)
|
38 |
+
target_height = target_width / ratio
|
39 |
+
target_width = int(target_width)
|
40 |
+
target_height = int(target_height)
|
41 |
+
|
42 |
+
resized = False
|
43 |
+
if width * height > max_megapixels:
|
44 |
+
image = image.resize((target_width, target_height), Image.BILINEAR)
|
45 |
+
trimap = trimap.resize((target_width, target_height), Image.BILINEAR)
|
46 |
+
resized = True
|
47 |
+
|
48 |
+
# Set device
|
49 |
+
if device == "cuda" and not torch.cuda.is_available():
|
50 |
+
device = "cpu"
|
51 |
+
device = torch.device(device)
|
52 |
+
|
53 |
+
# Load and process
|
54 |
+
vit_matte_model = load_VITMatte_model(local_files_only=local_files_only)
|
55 |
+
vit_matte_model.model.to(device)
|
56 |
+
|
57 |
+
inputs = vit_matte_model.processor(images=image, trimaps=trimap, return_tensors="pt")
|
58 |
+
|
59 |
+
with torch.no_grad():
|
60 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
61 |
+
predictions = vit_matte_model.model(**inputs).alphas
|
62 |
+
|
63 |
+
if torch.cuda.is_available():
|
64 |
+
torch.cuda.empty_cache()
|
65 |
+
torch.cuda.ipc_collect()
|
66 |
+
|
67 |
+
# Convert prediction to image
|
68 |
+
mask = predictions.cpu().squeeze().numpy()
|
69 |
+
mask = (mask * 255).astype(np.uint8)
|
70 |
+
mask = Image.fromarray(mask).convert('L')
|
71 |
+
|
72 |
+
mask = mask.crop((0, 0, image.width, image.height))
|
73 |
+
|
74 |
+
if resized:
|
75 |
+
mask = mask.resize((width, height), Image.BILINEAR)
|
76 |
+
|
77 |
+
return np.array(mask)
|
78 |
+
|
79 |
+
def create_matte_tab():
|
80 |
+
with gr.Tab("Image Matting"):
|
81 |
+
with gr.Row():
|
82 |
+
with gr.Column():
|
83 |
+
input_image = gr.Image(label="Input Image", type="numpy", height=256)
|
84 |
+
trimap_image = gr.Image(label="Trimap Image", type="numpy", height=256)
|
85 |
+
|
86 |
+
device = gr.Radio(
|
87 |
+
choices=["cpu", "cuda"],
|
88 |
+
value="cpu",
|
89 |
+
label="Device"
|
90 |
+
)
|
91 |
+
|
92 |
+
max_megapixels = gr.Slider(
|
93 |
+
minimum=0.5,
|
94 |
+
maximum=8.0,
|
95 |
+
value=2.0,
|
96 |
+
step=0.5,
|
97 |
+
label="Max Megapixels"
|
98 |
+
)
|
99 |
+
|
100 |
+
local_files = gr.Checkbox(
|
101 |
+
value=False,
|
102 |
+
label="Use Local Files Only"
|
103 |
+
)
|
104 |
+
|
105 |
+
process_btn = gr.Button("Generate Matte")
|
106 |
+
|
107 |
+
with gr.Column():
|
108 |
+
output_image = gr.Image(label="Generated Matte")
|
109 |
+
|
110 |
+
process_btn.click(
|
111 |
+
fn=generate_VITMatte,
|
112 |
+
inputs=[
|
113 |
+
input_image,
|
114 |
+
trimap_image,
|
115 |
+
local_files,
|
116 |
+
device,
|
117 |
+
max_megapixels
|
118 |
+
],
|
119 |
+
outputs=output_image
|
120 |
+
)
|