| import torch | |
| import torch.nn as nn | |
| class LayerNorm32(nn.LayerNorm): | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| return super().forward(x.float()).type(x.dtype) | |
| class GroupNorm32(nn.GroupNorm): | |
| """ | |
| A GroupNorm layer that converts to float32 before the forward pass. | |
| """ | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| return super().forward(x.float()).type(x.dtype) | |
| class ChannelLayerNorm32(LayerNorm32): | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| DIM = x.dim() | |
| x = x.permute(0, *range(2, DIM), 1).contiguous() | |
| x = super().forward(x) | |
| x = x.permute(0, DIM-1, *range(1, DIM-1)).contiguous() | |
| return x | |