Mark Duppenthaler
Debug Memory
1923610
# @title Model code (no change needed)
"""Model code"""
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
from __future__ import annotations
import io
import logging
import zlib
from dataclasses import dataclass, field
from typing import Dict, final, Final, List, Literal, Tuple
import librosa
import numpy as np
import soundfile as sf
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
import torchaudio.functional as audio_F
import uroman
from fairseq2.context import RuntimeContext
from fairseq2.data import VocabularyInfo
from fairseq2.models.asr import AsrModel, AsrModelOutput
from fairseq2.models.llama import LLaMAConfig, LLaMAFactory
from fairseq2.models.seq2seq import Seq2SeqBatch
from fairseq2.models.wav2vec2 import (
StandardWav2Vec2Masker,
Wav2Vec2EncoderConfig,
Wav2Vec2EncoderFactory,
Wav2Vec2Frontend,
Wav2Vec2Masker,
)
from fairseq2.models.wav2vec2.asr import Wav2Vec2AsrConfig
from fairseq2.nn import IncrementalStateBag, Linear, StandardEmbedding
from fairseq2.nn.padding import PaddingMask
from fairseq2.nn.transformer import TransformerDecoder, TransformerEncoder
from torch import Tensor
from torch.nn import Dropout
@final
class Wav2Vec2LlamaModel(AsrModel):
"""Represents a wav2vec 2.0 encoder feeding to a Llama decoder for ASR."""
model_dim: int
encoder_frontend: Wav2Vec2Frontend
encoder: TransformerEncoder
encoder_proj: nn.Module
text_frontend: StandardEmbedding
llama_decoder: TransformerDecoder
final_proj: nn.Module
masker: Wav2Vec2Masker | None
final_dropout: Dropout | None
target_vocab_info: VocabularyInfo
def __init__(
self,
encoder_frontend: Wav2Vec2Frontend,
encoder: TransformerEncoder,
encoder_proj: nn.Module,
text_frontend: StandardEmbedding,
llama_decoder: TransformerDecoder,
final_proj: nn.Module,
target_vocab_info: VocabularyInfo,
*,
masker: Wav2Vec2Masker | None = None,
final_dropout_p: float = 0.0,
max_generation_length: int = 8192,
encoder_stacking: int = 1,
frozen_encoder: bool = False,
random_context_length: bool = True,
) -> None:
"""
:param encoder_frontend:
The encoder frontend.
:param encoder:
The encoder (i.e. context network).
:param encoder_proj:
Normally a linear layer projecting the encoder outputs to the decoder's model dim.
:text_frontend:
The embedding module for text tokens.
:param llama_decoder:
The decoder-only model.
:param final_proj:
The last linear layers projecting from the decoder to logits.
:param target_vocab_info:
The vocabulary information of sequences produced by the model.
:param masker:
The feature masker.
:param final_dropout_p:
The dropout probability on context network outputs.
:param max_generation_length:
The maximum length of generated sequences.
:param encoder_stacking:
The number audio embeddings frames to stack before the decoder calls.
:param frozen_encoder:
If ``True``, the encoder is frozen during training.
"""
super().__init__()
self.model_dim = encoder.model_dim
self.encoder_frontend = encoder_frontend
self.encoder = encoder
self.encoder_proj = encoder_proj
self.text_frontend = text_frontend
self.llama_decoder = llama_decoder
self.final_proj = final_proj
self.target_vocab_info = target_vocab_info
self.max_generation_length = max_generation_length
self.encoder_stacking = encoder_stacking
self.frozen_encoder = frozen_encoder
self.random_context_length = random_context_length
self.context_len_rng = np.random.RandomState(42)
self.register_module("masker", masker)
if final_dropout_p > 0.0:
self.final_dropout = Dropout(final_dropout_p)
else:
self.register_module("final_dropout", None)
def forward(self, batch: Seq2SeqBatch) -> Wav2Vec2LlamaOutput: # type: ignore[override]
"""
:param batch:
The batch of sequences to process.
"""
device = batch.source_seqs.device
dtype = batch.source_seqs.dtype
batch = self.prepare_batch(batch)
inputs = self.create_default_syntax_inference(batch, device)
# Embed all modalities
embedded = self.embed_inputs(inputs, dtype)
# Concat all decoder inputs
(
decoder_inputs,
decoder_inputs_padding_mask,
decoder_context_inputs,
decoder_context_padding_mask,
) = self.concat_inputs(embedded)
# Run the decoder
dec_out, _ = self.llama_decoder(decoder_inputs, decoder_inputs_padding_mask)
logits = self.final_proj(dec_out)
assert self.target_vocab_info.pad_idx is not None
assert self.target_vocab_info.eos_idx is not None
return Wav2Vec2LlamaOutput(
logits=logits,
logits_padding_mask=decoder_inputs_padding_mask,
decoder_context_inputs=decoder_context_inputs,
decoder_context_padding_mask=decoder_context_padding_mask,
model=self,
pad_idx=self.target_vocab_info.pad_idx,
eos_idx=self.target_vocab_info.eos_idx,
padding_mask=None,
)
def prepare_batch(self, batch: Seq2SeqBatch) -> Seq2SeqBatch:
# Create padding masks if there aren't any
if batch.source_padding_mask is None:
lengths = torch.full_like(
batch.source_seqs[:, 0],
fill_value=batch.source_seqs.size(1),
dtype=torch.int64,
)
batch.source_padding_mask = PaddingMask(lengths, int(lengths.max()))
if batch.target_padding_mask is None:
lengths = torch.full_like(
batch.target_seqs[:, 0],
fill_value=batch.target_seqs.size(1),
dtype=torch.int64,
)
batch.target_padding_mask = PaddingMask(lengths, int(lengths.max()))
# Padding masks for context audio and text
if "context_audio" in batch.example:
for i in range(len(batch.example["context_audio"])):
# For audio
seq_lens = batch.example["context_audio"][i]["data"]["waveform"][
"seq_lens"
]
batch.example["context_audio"][i]["data"]["waveform"][
"padding_mask"
] = PaddingMask(seq_lens, int(seq_lens.max()))
# For text
seq_lens = batch.example["context_text"][i]["seq_lens"]
batch.example["context_text"][i]["padding_mask"] = PaddingMask(
seq_lens, int(seq_lens.max())
)
return batch
def create_default_syntax_inference(
self, batch: Seq2SeqBatch, device
) -> List[Dict[str, object]]:
# Create a dict of inputs for the base case. Ths syntax is:
# target audio <bos> target text <eos>
inputs = [
{
"value": {
"seqs": batch.source_seqs,
"padding_mask": batch.source_padding_mask,
},
"type": "audio",
"loss": False,
},
{
"value": {
"seqs": self.create_single_char(
batch, self.target_vocab_info.bos_idx, device
)
},
"type": "text",
"loss": False,
},
]
return inputs
@staticmethod
def create_single_char(batch: Seq2SeqBatch, char: int, device) -> Tensor:
return torch.full_like(
batch.target_seqs[:, :1], fill_value=char, device=device # type: ignore
)
def embed_inputs(
self, inputs: List[Dict[str, object]], dtype: Literal
) -> List[Dict[str, object]]:
# Embed the different modalities
for inp in inputs:
if inp["type"] == "audio":
inp["value"]["seqs"], inp["value"]["padding_mask"] = self.embed_audio(
inp["value"]["seqs"], inp["value"]["padding_mask"]
)
elif inp["type"] == "text":
inp["value"]["seqs"] = self.embed_text(inp["value"]["seqs"], dtype)
else:
raise ValueError(f"Unknown input type: {inp['type']}")
return inputs
def embed_audio(
self, seqs: Tensor, padding_mask: PaddingMask
) -> tuple[Tensor, PaddingMask | None]:
# This is somewhat more memory efficient than setting param.requires_grad to False
# Since the encoder activations will not be saved in the graph too.
with torch.set_grad_enabled(not self.frozen_encoder):
# Run the encoder
enc_out, enc_padding_mask, _ = self.encoder_frontend.extract_features(
seqs, padding_mask
)
enc_out, enc_padding_mask, _ = self.encoder_frontend.process_features(
enc_out, enc_padding_mask, self.masker if self.training else None
)
enc_out, enc_padding_mask = self.encoder(enc_out, enc_padding_mask)
if self.final_dropout is not None:
enc_out = self.final_dropout(enc_out)
# Stack the encoder outputs
if enc_out.size(1) % self.encoder_stacking != 0:
n_padding = self.encoder_stacking - (
enc_out.size(1) % self.encoder_stacking
)
enc_out = F.pad(enc_out, (0, 0, 0, n_padding))
assert enc_out.size(1) % self.encoder_stacking == 0
enc_out = enc_out.view(
enc_out.size(0),
enc_out.size(1) // self.encoder_stacking,
enc_out.size(-1) * self.encoder_stacking,
)
new_lengths = torch.where(
(enc_padding_mask.seq_lens % self.encoder_stacking) == 0,
enc_padding_mask.seq_lens // self.encoder_stacking,
enc_padding_mask.seq_lens // self.encoder_stacking + 1,
)
enc_padding_mask = PaddingMask(new_lengths, int(new_lengths.max()))
# Project encoder outputs to decoder input dimension
enc_out = self.encoder_proj(enc_out)
return enc_out, enc_padding_mask
def embed_text(self, seqs: Tensor, dtype: Literal) -> Tensor:
return self.text_frontend(seqs).to(dtype)
def concat_inputs(
self, inputs: List[Dict[str, object]]
) -> Tuple[Tensor, PaddingMask]:
t = inputs[0]["value"]["seqs"]
device = t.device
dtype = t.dtype
B = t.size(0)
input_dim = t.size(2)
ones = torch.ones(dtype=torch.int64, device=device, size=[B])
# Compute total lengths
lengths = [
(
inp["value"]["padding_mask"].seq_lens
if "padding_mask" in inp["value"]
else ones
)
for inp in inputs
]
total_lengths = sum(lengths)
padding_mask = PaddingMask(total_lengths, int(total_lengths.max()))
# Init the matrix with zeros
decoder_inputs = torch.zeros(
[B, int(total_lengths.max()), input_dim],
device=device,
dtype=dtype,
)
# Put everything in the right place
for b in range(B):
b_inputs = [
inp["value"]["seqs"][b : b + 1, : length[b]]
for (inp, length) in zip(inputs, lengths)
]
b_inputs = torch.cat(b_inputs, dim=1)
assert b_inputs.size(1) == padding_mask.seq_lens[b]
decoder_inputs[b, : b_inputs.size(1)] = b_inputs
# Compute total context length (everything that we don't train the loss for)
context_lengths = [
(
inp["value"]["padding_mask"].seq_lens
if "padding_mask" in inp["value"]
else ones
)
for inp in inputs
if inp["loss"] == False
]
total_context_lengths = sum(context_lengths)
context_padding_mask = PaddingMask(
total_context_lengths, int(total_context_lengths.max())
)
decoder_context_inputs = decoder_inputs[:, : total_context_lengths.max()]
return (
decoder_inputs,
padding_mask,
decoder_context_inputs,
context_padding_mask,
)
@final
@dataclass
class Wav2Vec2LlamaOutput(AsrModelOutput):
logits: Tensor
"""The logits for next-step prediction. *Shape:* :math:`(N,S_{out}, V)`,
where :math:`N` is the batch size, :math:`S_{out}` is the decoder sequence
length, :math:`V` is the size
of the vocabulary."""
logits_padding_mask: PaddingMask
"""The padding mask for the above tensor. *Shape:* :math:`(N,S_{out})`."""
decoder_context_inputs: Tensor
"""
Inputs to the llama decoder for everything except the final text. *Shape:* :math:`(N,S_{out},D)`.
"""
decoder_context_padding_mask: PaddingMask
"""The padding mask for the above tensor. *Shape:* :math:`(N,S_{out})`, where
:math:`N` is the batch size and :math:`S_{out}` a sequence
length."""
model: nn.Module
"""A reference to the model."""
pad_idx: int
"""The index of the padding symbol in the target vocabulary."""
eos_idx: int
"""The index of the end-of-sequence symbol in the target vocabulary."""
def add_eos(
self, targets: Tensor, target_padding_mask: PaddingMask
) -> tuple[Tensor, PaddingMask]:
targets = torch.cat(
[
targets,
torch.full_like(targets[:, :1], fill_value=self.pad_idx),
],
dim=-1,
)
targets[torch.arange(targets.size(0)), target_padding_mask.seq_lens] = (
self.eos_idx
)
target_padding_mask = PaddingMask(
target_padding_mask.seq_lens + 1,
int(target_padding_mask.seq_lens.max()) + 1,
)
return targets, target_padding_mask
def remove_context_logits(
self,
targets: Tensor,
target_padding_mask: PaddingMask,
) -> Tensor:
assert self.decoder_context_padding_mask is not None
logits_no_context = torch.zeros_like(
self.logits[:, : targets.size(1), :],
)
for i in range(self.logits.size(0)):
context_len_i = self.decoder_context_padding_mask.seq_lens[i]
tgt_len_i = target_padding_mask.seq_lens[i]
total_len_i = self.logits_padding_mask.seq_lens[i]
assert context_len_i + tgt_len_i == total_len_i
logits_no_context[i, :tgt_len_i] = self.logits[
i, context_len_i - 1 : context_len_i - 1 + tgt_len_i
]
return logits_no_context
@staticmethod
def combine_masks(mask1: Tensor, mask2: Tensor) -> Tensor:
combined_mask = torch.zeros_like(mask1)
combined_mask[mask1] = mask2
return combined_mask
@staticmethod
def idx_1d_to_2d(idx: Tensor, dim2: int) -> tuple[Tensor, Tensor]:
return idx // dim2, idx % dim2
@staticmethod
def compression_ratio(text: str) -> float:
text_bytes = text.encode("utf-8")
return len(text_bytes) / len(zlib.compress(text_bytes))
@torch.no_grad()
def generate_hypotheses(
self, pad_idx: int, blank_label: int = 0
) -> tuple[Tensor, PaddingMask | None]:
# Some init
nbest = 5
length_norm = False
B = self.decoder_context_inputs.size(0)
device = self.decoder_context_inputs.device
dtype = self.decoder_context_inputs.dtype
ex_separator = torch.arange(B, device=device).unsqueeze(1) * nbest
eos_idx = self.model.target_vocab_info.eos_idx
# Prepare a decoder input matrix, prefill with context
decoder_inputs = torch.zeros(
[
B * nbest,
self.model.max_generation_length,
self.model.llama_decoder.model_dim,
],
device=device,
dtype=dtype,
)
decoder_inputs[:, : self.decoder_context_inputs.size(1)] = (
self.decoder_context_inputs.repeat_interleave(nbest, dim=0)
)
context_lengths = self.decoder_context_padding_mask.seq_lens.repeat_interleave(
nbest
)
# Prepare a token output matrix and a scores matrix
out_tokens = torch.full_like(
decoder_inputs[:, :, 0],
fill_value=pad_idx,
dtype=torch.int,
)
scores = torch.zeros_like(decoder_inputs[:, 0, 0], dtype=torch.float)
# Prefill with shortest context, keep state
state_bag = IncrementalStateBag(max_num_steps=self.model.max_generation_length)
min_context_len = int(context_lengths.min())
_, _ = self.model.llama_decoder(
seqs=decoder_inputs[:, :min_context_len],
padding_mask=None,
state_bag=state_bag,
)
state_bag.increment_step_nr(min_context_len)
# Iterative decoding
# For each sample, choose either context, or emitted text embedding
# If EOS is emitted, the sample is non-active
# Stop when there are no active samples
eos_mask = torch.zeros_like(context_lengths, dtype=torch.bool)
done = False
t = context_lengths.min() - 1
while not done:
# Run the decoder on mixed context and emitted text embeddings
dec_out, _ = self.model.llama_decoder(
seqs=decoder_inputs[:, t : t + 1],
padding_mask=None,
state_bag=state_bag,
)
state_bag.increment_step_nr(1)
logits = self.model.final_proj(dec_out).squeeze(1) # [B * nbest, V]
log_probs = F.log_softmax(logits, dim=-1)
# Choose nbest
if length_norm:
n_tokens = torch.logical_and(
out_tokens[:, :t] != pad_idx, out_tokens[:, :t] != eos_idx
).sum(dim=1, keepdim=True)
candidate_scores = (scores.unsqueeze(1) * n_tokens + log_probs) / (
n_tokens + 1
)
else:
candidate_scores = scores.unsqueeze(1) + log_probs # [B * nbest, V]
candidate_scores[eos_mask] = -torch.inf
candidate_scores[eos_mask, eos_idx] = scores[
eos_mask
] # Don't change scores for ended hypos
top_scores, top_idx = candidate_scores.view(B, -1).topk(
k=nbest, dim=-1, sorted=True
)
top_idx_nbest, top_idx_v = self.idx_1d_to_2d(
top_idx, candidate_scores.size(-1)
)
top_idx_b = (top_idx_nbest + ex_separator).view(-1) # Parent hypos indices
# Reorder some tensors based on parent hypos
out_tokens = out_tokens[top_idx_b]
eos_mask = eos_mask[top_idx_b]
state_bag.reorder(top_idx_b)
scores = torch.where(eos_mask, scores, top_scores.view(-1))
out_tokens[:, t] = top_idx_v.view(-1)
# For hypos that still don't emit tokens, set new tokens to pad_idx, score to 0.
no_token_mask = t < context_lengths - 1
out_tokens[no_token_mask, t] = pad_idx
scores[no_token_mask] = 0.0
# For hypos that had EOS previously, set new tokens to EOS. Scores don't change.
# Set new EOS mask.
out_tokens[eos_mask, t] = eos_idx
new_tokens = out_tokens[:, t : t + 1]
eos_mask = (new_tokens == eos_idx).squeeze(1)
# Run new tokens through frontend, set in decoder input
new_tokens_embedded = self.model.embed_text(new_tokens, dtype=dtype)
decoder_inputs[~no_token_mask, t + 1] = (
new_tokens_embedded[~no_token_mask].to(decoder_inputs.dtype).squeeze(1)
) # Don't override audio encoder outputs
# Early stopping if emitting repeating characters, use compression ratio
# only every t, only when started emitting tokens more than T tokens ago
compression_window = 100
compression_threshold = 4.0
if t % 250 == 0:
cpu_tokens = out_tokens[:, t - compression_window : t].cpu().numpy()
ratios_floats = [
self.compression_ratio(
np.array_str(cpu_tokens[i]).replace("\n", "")
)
for i in range(B * nbest)
]
ratios = torch.tensor(ratios_floats, device=device)
early_stopping_mask = torch.logical_and(
ratios > compression_threshold,
t > context_lengths + compression_window,
)
eos_mask = torch.logical_or(eos_mask, early_stopping_mask)
# Decide if we are done
done = bool(
torch.logical_or(
torch.all(eos_mask),
t == self.model.max_generation_length - 4,
)
)
t += 1
# Get final tokens, only use top hypo
out_tokens = out_tokens[::nbest]
valid_tokens_mask = torch.logical_and(
torch.logical_and(
out_tokens != pad_idx,
out_tokens != self.model.target_vocab_info.bos_idx,
),
out_tokens != eos_idx,
)
valid_tokens_count = valid_tokens_mask.sum(dim=1)
final_tokens = torch.full(
[B, int(valid_tokens_count.max())],
fill_value=pad_idx,
dtype=torch.int64,
device=device,
)
for i in range(B):
final_tokens[i, : valid_tokens_count[i]] = out_tokens[i][
valid_tokens_mask[i]
]
padding_mask = PaddingMask(valid_tokens_count, int(valid_tokens_count.max()))
return final_tokens, padding_mask
class Wav2Vec2LlamaFactory:
_config: Wav2Vec2LlamaConfig
def __init__(
self,
config: Wav2Vec2LlamaConfig,
) -> None:
self._config = config
def create_encoder(self) -> tuple[Wav2Vec2Frontend, TransformerEncoder]:
factory = Wav2Vec2EncoderFactory(self._config.wav2vec_ctc_config.encoder_config)
return factory.create_encoder_frontend(), factory.create_encoder()
def create_masker(self) -> Wav2Vec2Masker:
config = self._config.wav2vec_ctc_config
return StandardWav2Vec2Masker(
config.mask_codebase,
config.encoder_config.model_dim,
config.temporal_mask_span_len,
config.max_temporal_mask_prob,
config.min_num_temporal_mask_spans,
config.spatial_mask_span_len,
config.max_spatial_mask_prob,
config.min_num_spatial_mask_spans,
)
def create_model(self) -> Wav2Vec2LlamaModel:
encoder_frontend, encoder = self.create_encoder()
masker = (
self.create_masker()
if self._config.wav2vec_ctc_config.use_masking
else None
)
encoder_proj = Linear(
self._config.wav2vec_ctc_config.encoder_config.model_dim
* self._config.encoder_stacking,
self._config.llama_config.model_dim,
bias=True,
)
text_frontend = StandardEmbedding(
num_embeddings=self._config.llama_config.vocab_info.size,
embedding_dim=self._config.llama_config.model_dim,
)
llama_decoder = LLaMAFactory(self._config.llama_config).create_decoder()
final_proj = Linear(
self._config.llama_config.model_dim,
self._config.llama_config.vocab_info.size,
bias=False,
)
return Wav2Vec2LlamaModel(
encoder_frontend=encoder_frontend,
encoder=encoder,
encoder_proj=encoder_proj,
text_frontend=text_frontend,
llama_decoder=llama_decoder,
final_proj=final_proj,
target_vocab_info=self._config.wav2vec_ctc_config.vocab_info,
masker=masker,
final_dropout_p=self._config.wav2vec_ctc_config.final_dropout_p,
max_generation_length=self._config.llama_config.max_seq_len,
encoder_stacking=self._config.encoder_stacking,
frozen_encoder=self._config.frozen_encoder,
)
"""Configs"""
from dataclasses import dataclass, field
from typing import Final
from fairseq2.context import RuntimeContext
from fairseq2.data import VocabularyInfo
from fairseq2.models.wav2vec2 import Wav2Vec2EncoderConfig
WAV2VEC2_ASR_MODEL_FAMILY: Final = "wav2vec2_asr"
@dataclass(kw_only=True)
class Wav2Vec2AsrConfig:
"""Holds the configuration of a wav2vec 2.0 ASR model.
The default values correspond to the base 10h architecture as described in
:cite:t:`https://doi.org/10.48550/arxiv.2006.11477`.
"""
encoder_config: Wav2Vec2EncoderConfig = field(
default_factory=lambda: Wav2Vec2EncoderConfig(
feature_gradient_scale=1.0,
dropout_p=0.0,
attn_dropout_p=0.0,
ffn_inner_dropout_p=0.1,
)
)
"""The configuration of the encoder."""
vocab_info: VocabularyInfo = field(
default_factory=lambda: VocabularyInfo(
size=32, unk_idx=3, bos_idx=0, eos_idx=2, pad_idx=1
)
)
"""The vocabulary information."""
final_dropout_p: float = 0.0
"""The dropout probability on the output of the encoder."""
# Mask
mask_codebase: str = "fairseq2"
use_masking: bool = True
"""If ``True``, masks features as regularization."""
temporal_mask_span_len: int = 10
"""The length of each temporal mask span that is applied over time steps."""
max_temporal_mask_prob: float = 0.69
"""The maximum probability of masking a time step. Note that, due to mask
span overlap, the effective probability will be lower."""
min_num_temporal_mask_spans: int = 2
"""The minimum number of temporal masks sampled per sequence."""
spatial_mask_span_len: int = 64
"""The length of each spatial mask span that is applied over features."""
max_spatial_mask_prob: float = 0.55
"""The maximum probability of masking a feature. Note that, due to mask span
overlap, the effective probability will be lower."""
min_num_spatial_mask_spans: int = 2
"""The minimum number of spatial masks sampled per sequence."""
def register_wav2vec2_asr_configs(context: RuntimeContext) -> None:
registry = context.get_config_registry(Wav2Vec2AsrConfig)
wav2vec2_asr_arch = registry.decorator
w2v2_encoder_registry = context.get_config_registry(Wav2Vec2EncoderConfig)
@wav2vec2_asr_arch("base_10h")
def base_10h() -> Wav2Vec2AsrConfig:
return Wav2Vec2AsrConfig()
@wav2vec2_asr_arch("base_100h")
def base_100h() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config.layer_drop_p = 0.1
return config
@wav2vec2_asr_arch("large_10h")
def large_10h() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("large")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.max_temporal_mask_prob = 0.80
config.max_spatial_mask_prob = 0.30
return config
@wav2vec2_asr_arch("large_100h")
def large_100h() -> Wav2Vec2AsrConfig:
config = large_10h()
config.max_temporal_mask_prob = 0.53
config.max_spatial_mask_prob = 0.55
return config
@wav2vec2_asr_arch("large_lv60k_10h")
def large_lv60k_10h() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("large_lv60k")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.max_temporal_mask_prob = 0.80
config.max_spatial_mask_prob = 0.30
return config
@wav2vec2_asr_arch("large_lv60k_100h")
def large_lv60k_100h() -> Wav2Vec2AsrConfig:
config = large_lv60k_10h()
config.max_temporal_mask_prob = 0.53
config.max_spatial_mask_prob = 0.55
return config
@wav2vec2_asr_arch("300m_bib61")
def bib61_300m() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("large_lv60k")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.use_masking = False
config.max_temporal_mask_prob = 0.0
config.max_spatial_mask_prob = 0.0
config.vocab_info.size = 2475
return config
@wav2vec2_asr_arch("300m_bib1143")
def bib1143_300m() -> Wav2Vec2AsrConfig:
config = bib61_300m()
config.vocab_info.size = 3335
return config
@wav2vec2_asr_arch("1b_bib61")
def bib61_1b() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("1b")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.use_masking = False
config.max_temporal_mask_prob = 0.0
config.max_spatial_mask_prob = 0.0
config.vocab_info.size = 2475
return config
@wav2vec2_asr_arch("1b_llama_bib61")
def llama_bib61_1b() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("1b_llama")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.use_masking = False
config.max_temporal_mask_prob = 0.0
config.max_spatial_mask_prob = 0.0
config.vocab_info.size = 2475
return config
@wav2vec2_asr_arch("2b_bib61")
def bib61_2b() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("2b")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.use_masking = False
config.max_temporal_mask_prob = 0.0
config.max_spatial_mask_prob = 0.0
config.vocab_info.size = 2475
return config
@wav2vec2_asr_arch("3b_bib61")
def bib61_3b() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("3b")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.use_masking = False
config.max_temporal_mask_prob = 0.0
config.max_spatial_mask_prob = 0.0
config.vocab_info.size = 2475
return config
@wav2vec2_asr_arch("5b_bib61")
def bib61_5b() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("5b")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.use_masking = False
config.max_temporal_mask_prob = 0.0
config.max_spatial_mask_prob = 0.0
config.vocab_info.size = 2475
return config
@wav2vec2_asr_arch("7b_bib61")
def bib61_7b() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("7b")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.use_masking = False
config.max_temporal_mask_prob = 0.0
config.max_spatial_mask_prob = 0.0
config.vocab_info.size = 2475
return config
@wav2vec2_asr_arch("3.25b_bib61")
def higher_bib61_3b() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("3.25b")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.use_masking = False
config.max_temporal_mask_prob = 0.0
config.max_spatial_mask_prob = 0.0
config.vocab_info.size = 2475
return config
@wav2vec2_asr_arch("5b_front51")
def front51_5b() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("5b")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.use_masking = False
config.max_temporal_mask_prob = 0.0
config.max_spatial_mask_prob = 0.0
config.vocab_info.size = 222
return config
@wav2vec2_asr_arch("7b_front51")
def front51_7b() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("7b")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.use_masking = False
config.max_temporal_mask_prob = 0.0
config.max_spatial_mask_prob = 0.0
config.vocab_info.size = 222
return config
@wav2vec2_asr_arch("1b_bib1143")
def bib1143_1b() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("1b")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.use_masking = False
config.max_temporal_mask_prob = 0.0
config.max_spatial_mask_prob = 0.0
config.vocab_info.size = 3335
return config
@wav2vec2_asr_arch("3b_bib1143")
def bib1143_3b() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("3b")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.use_masking = False
config.max_temporal_mask_prob = 0.0
config.max_spatial_mask_prob = 0.0
config.vocab_info.size = 3335
return config
@wav2vec2_asr_arch("5b_bib1143")
def bib1143_5b() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("5b")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.use_masking = False
config.max_temporal_mask_prob = 0.0
config.max_spatial_mask_prob = 0.0
config.vocab_info.size = 3335 # following bibfront1194's vocab size
return config
@wav2vec2_asr_arch("7b_bib1143")
def bib1143_7b() -> Wav2Vec2AsrConfig:
config = base_10h()
config.encoder_config = w2v2_encoder_registry.get("7b")
config.encoder_config.feature_gradient_scale = 1.0
config.encoder_config.dropout_p = 0.0
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.ffn_inner_dropout_p = 0.1
config.encoder_config.layer_drop_p = 0.1
config.use_masking = False
config.max_temporal_mask_prob = 0.0
config.max_spatial_mask_prob = 0.0
config.vocab_info.size = 3335
return config
from dataclasses import dataclass, field
from typing import Final
from fairseq2.context import RuntimeContext
from fairseq2.nn.transformer import TransformerNormOrder
from fairseq2.utils.validation import ValidationError, ValidationResult
WAV2VEC2_MODEL_FAMILY: Final = "wav2vec2"
@dataclass(kw_only=True)
class Wav2Vec2Config:
"""Holds the configuration of a wav2vec 2.0 model.
The default values correspond to the base architecture as described in
:cite:t:`https://doi.org/10.48550/arxiv.2006.11477`.
"""
encoder_config: Wav2Vec2EncoderConfig = field(
default_factory=lambda: Wav2Vec2EncoderConfig()
)
"""The configuration of the wav2vec 2.0 encoder."""
final_dim: int = 256
"""The dimensionality of the final projection that is applied to context
network outputs and quantized targets."""
final_proj_bias: bool = True
"""If ``True``, the final projection learns an additive bias."""
quantizer_encoder_grad: bool = True
"""If ``True``, gradients are propagated from the quantizer through the convolutional
encoder. Otherwise, they are detached and the encoder is only trained with gradients
from the transformer. """
# Mask
mask_codebase: str = "fairseq2"
temporal_mask_span_len: int = 10
"""The length of each temporal mask span that is applied over time steps."""
max_temporal_mask_prob: float = 0.69
"""The maximum probability of masking a time step. Note that, due to mask
span overlap, the effective probability will be lower."""
min_num_temporal_mask_spans: int = 2
"""The minimum number of temporal masks sampled per sequence."""
spatial_mask_span_len: int = 10
"""The length of each spatial mask span that is applied over features."""
max_spatial_mask_prob: float = 0.0
"""The maximum probability of masking a feature. Note that, due to mask span
overlap, the effective probability will be lower."""
min_num_spatial_mask_spans: int = 2
"""The minimum number of spatial masks sampled per sequence."""
# Quantization
quantized_dim: int = 256
"""The output dimensionality of vector quantizer."""
num_codebooks: int = 2
"""The number of codebooks."""
num_codebook_entries: int = 320
"""The number of entries per codebook."""
codebook_sampling_temperature: tuple[float, float, float] = (2.0, 0.5, 0.999995)
"""A tuple of start temperature, end temperature, and decay factor for
codebook entry sampling."""
# Loss
num_distractors: int = 100
"""The number of distractors to use in contrastive prediction."""
logit_temp: float = 0.1
"""The temperature to divide logits by."""
@dataclass(kw_only=True)
class Wav2Vec2EncoderConfig:
"""Holds the configuration of a wav2vec 2.0 encoder.
The default values correspond to the base architecture described in
:cite:t:`https://doi.org/10.48550/arxiv.2006.11477`.
"""
model_dim: int = 768
"""The dimensionality of the model."""
max_seq_len: int = 4096
"""The maximum sequence length after feature extraction."""
# Features
feature_dim: int = 512
"""The dimensionality of extracted features."""
use_fbank: bool = False
"""If ``True``, uses log-mel filterbanks instead of waveforms as input."""
first_pass_dropout_p: float = 0.0
"""The dropout probability on extracted features before masking and
positional encoding."""
layer_norm_features: bool = True
"""If ``True``, applies Layer Normalization to extracted features."""
# Waveform Feature Extractor
feature_extractor_layer_descs: list[tuple[int, int, int]] = field(
default_factory=lambda: [(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512, 2, 2)] * 2
)
"""A tuple of output dimension, kernel size, and stride for each feature
extraction layer."""
feature_extractor_bias: bool = False
"""If ``True``, convolutions in feature extraction layers learn an additive
bias."""
feature_extractor_layer_norm_convs: bool = False
"""If ``True``, applies Layer Normalization to outputs of convolutions in
feature extraction layers."""
feature_gradient_scale: float = 0.1
"""The scale factor for gradients of extracted features. Setting to a value
less than 1.0 allows the feature extractor to learn at a lower rate than the
rest of the model."""
# Filterbank Feature Extractor
num_fbank_channels: int = 0
"""The number of source log-mel filterbank channels."""
fbank_stride: int = 0
sample_fbank_every_k: int = 0
# Position Encoder
pos_encoder_type: str = "conv"
"""The type of position encoder ('conv', 'relative', 'rotary')."""
# Convolutional Position Encoder
pos_encoder_depth: int = 1
"""The number of stacked position encoder layers."""
pos_conv_kernel_size: int = 128
"""The total kernel size of 1D convolutions in position encoder layers."""
num_pos_conv_groups: int = 16
"""The number of convolution groups in position encoder layers."""
# Encoder (i.e. Context Network)
use_conformer: bool = False
"""If ``True``, uses Conformer blocks instead of Transformer encoder layers."""
num_encoder_layers: int = 12
"""The number of encoder layers."""
num_encoder_attn_heads: int = 12
"""The number of attention heads in encoder layers."""
ffn_inner_dim: int = 3072
"""The inner dimensionality of feed-forward networks."""
dropout_p: float = 0.1
"""The dropout probability on outputs of Transformer layers."""
attn_dropout_p: float = 0.1
"""The dropout probability on attention weights."""
ffn_inner_dropout_p: float = 0.0
"""The dropout probability on inner activations of feed-forward networks."""
layer_drop_p: float = 0.05
"""If greater than zero, applies LayerDrop to encoder layers as described in
:cite:t:`https://doi.org/10.48550/arxiv.1909.11556`."""
norm_order: TransformerNormOrder = TransformerNormOrder.POST
"""The Layer Normalization order."""
depthwise_conv_kernel_size: int = 0
"""The kernel size of depthwise convolutions in Conformer blocks."""
def validate(self) -> None:
result = ValidationResult()
if self.use_conformer and self.norm_order != TransformerNormOrder.POST:
result.add_error(
f"`norm_order` must be `POST` when `use_conformer` is `True`, but is `{self.norm_order}` instead."
)
if result.has_error:
raise ValidationError(
"The wav2vec 2.0 encoder configuration has one or more validation errors:", result # fmt: skip
)
def register_wav2vec2_configs(context: RuntimeContext) -> None:
arch = context.get_config_registry(Wav2Vec2Config).decorator
arch_encoder = context.get_config_registry(Wav2Vec2EncoderConfig).decorator
@arch("base")
def base() -> Wav2Vec2Config:
return Wav2Vec2Config()
@arch_encoder("base")
def base_encoder() -> Wav2Vec2EncoderConfig:
return base().encoder_config
@arch("large")
def large() -> Wav2Vec2Config:
config = base()
config.encoder_config.model_dim = 1024
config.encoder_config.num_encoder_layers = 24
config.encoder_config.num_encoder_attn_heads = 16
config.encoder_config.ffn_inner_dim = 4096
config.encoder_config.dropout_p = 0.0
config.encoder_config.layer_drop_p = 0.2
config.quantized_dim = 768
config.final_dim = 768
return config
@arch_encoder("large")
def large_encoder() -> Wav2Vec2EncoderConfig:
return large().encoder_config
@arch("large_lv60k")
def large_lv60k() -> Wav2Vec2Config:
config = large()
config.encoder_config.layer_norm_features = False
config.encoder_config.feature_extractor_bias = True
config.encoder_config.feature_extractor_layer_norm_convs = True
config.encoder_config.layer_drop_p = 0.0
config.encoder_config.norm_order = TransformerNormOrder.PRE
config.codebook_sampling_temperature = (2.0, 0.1, 0.999995)
return config
@arch_encoder("large_lv60k")
def large_lv60k_encoder() -> Wav2Vec2EncoderConfig:
return large_lv60k().encoder_config
@arch("xlsr_base")
def xlsr_base() -> Wav2Vec2Config:
config = large_lv60k()
config.encoder_config.attn_dropout_p = 0.0
config.encoder_config.feature_gradient_scale = 1.0
return config
@arch_encoder("xlsr_base")
def xlsr_base_encoder() -> Wav2Vec2EncoderConfig:
return xlsr_base().encoder_config
@arch("base_conformer")
def base_conformer() -> Wav2Vec2Config:
config = xlsr_base()
config.encoder_config.use_conformer = True
config.encoder_config.norm_order = TransformerNormOrder.POST
config.encoder_config.depthwise_conv_kernel_size = 31
# pos_encoder_type
return config
@arch_encoder("base_conformer")
def base_conformer_encoder() -> Wav2Vec2EncoderConfig:
return base_conformer().encoder_config
@arch("tiny")
def tiny() -> Wav2Vec2Config:
config = xlsr_base()
config.encoder_config.model_dim = 1280
config.encoder_config.num_encoder_layers = 4
config.encoder_config.ffn_inner_dim = 1280
config.encoder_config.dropout_p = 0.0
config.quantized_dim = 512
config.final_dim = 512
config.encoder_config.first_pass_dropout_p = 0.1
return config
@arch_encoder("tiny")
def tiny_encoder() -> Wav2Vec2EncoderConfig:
return tiny().encoder_config
@arch("1b")
def b1() -> Wav2Vec2Config:
config = xlsr_base()
config.encoder_config.model_dim = 1280
config.encoder_config.num_encoder_layers = 48
config.encoder_config.ffn_inner_dim = 5120
config.encoder_config.dropout_p = 0.0
config.quantized_dim = 1024
config.final_dim = 1024
config.encoder_config.first_pass_dropout_p = 0.1
return config
@arch_encoder("1b")
def b1_encoder() -> Wav2Vec2EncoderConfig:
return b1().encoder_config
@arch("2b")
def b2() -> Wav2Vec2Config:
config = b1()
config.encoder_config.model_dim = 1920
config.encoder_config.ffn_inner_dim = 7680
return config
@arch_encoder("2b")
def b2_encoder() -> Wav2Vec2EncoderConfig:
return b2().encoder_config
@arch("3b")
def b3() -> Wav2Vec2Config:
config = b1()
config.encoder_config.num_encoder_layers = 60
config.encoder_config.model_dim = 2048
config.encoder_config.ffn_inner_dim = 8192
return config
@arch_encoder("3b")
def b3_encoder() -> Wav2Vec2EncoderConfig:
return b3().encoder_config
@arch("3b_mel")
def mel_3b() -> Wav2Vec2Config:
config = b3()
config.encoder_config.use_fbank = True
config.encoder_config.num_fbank_channels = 80
config.encoder_config.fbank_stride = 2
config.encoder_config.sample_fbank_every_k = 1
config.encoder_config.feature_dim = 160
return config
@arch_encoder("3b_mel")
def mel_3b_encoder() -> Wav2Vec2EncoderConfig:
return mel_3b().encoder_config
@arch("3.25b")
def higher_3b() -> Wav2Vec2Config:
config = b1()
config.encoder_config.num_encoder_layers = 64
config.encoder_config.model_dim = 2048
config.encoder_config.ffn_inner_dim = 8192
config.encoder_config.num_encoder_attn_heads = 32
config.quantized_dim = 1280
config.final_dim = 1280
return config
@arch_encoder("3.25b")
def higher_3b_encoder() -> Wav2Vec2EncoderConfig:
return higher_3b().encoder_config
@arch("4b")
def b4() -> Wav2Vec2Config:
config = b2()
config.quantized_dim = 1280
config.final_dim = 1280
config.encoder_config.num_encoder_layers = 64
config.encoder_config.model_dim = 2304
config.encoder_config.ffn_inner_dim = 9216
config.encoder_config.num_encoder_attn_heads = 32
return config
@arch_encoder("4b")
def b4_encoder() -> Wav2Vec2EncoderConfig:
return b4().encoder_config
@arch("1b_llama")
def llama_1b() -> Wav2Vec2Config:
config = xlsr_base()
config.encoder_config.model_dim = 2048
config.encoder_config.num_encoder_layers = 16
config.encoder_config.ffn_inner_dim = int(2048 * 4 * 1.5)
config.encoder_config.num_encoder_attn_heads = 32
config.encoder_config.dropout_p = 0.0
config.quantized_dim = 1024
config.final_dim = 1024
config.encoder_config.first_pass_dropout_p = 0.1
return config
@arch_encoder("1b_llama")
def llama_1b_encoder() -> Wav2Vec2EncoderConfig:
return llama_1b().encoder_config
@arch("3b_llama")
def llama_3b() -> Wav2Vec2Config:
config = llama_1b()
config.encoder_config.model_dim = 2560
config.encoder_config.num_encoder_layers = 32
config.encoder_config.ffn_inner_dim = int(2560 * 4 * 1.0)
config.quantized_dim = 2048
config.final_dim = 2048
return config
@arch_encoder("3b_llama")
def llama_3b_encoder() -> Wav2Vec2EncoderConfig:
return llama_3b().encoder_config
@arch("5b")
def b5() -> Wav2Vec2Config:
config = b3()
config.encoder_config.num_encoder_layers = 96
config.encoder_config.model_dim = 2048
config.encoder_config.ffn_inner_dim = 8192
config.encoder_config.num_encoder_attn_heads = 16
config.quantized_dim = 1024
config.final_dim = 1024
return config
@arch_encoder("5b")
def b5_encoder() -> Wav2Vec2EncoderConfig:
return b5().encoder_config
@arch("7b")
def b7() -> Wav2Vec2Config:
config = b5()
config.encoder_config.num_encoder_layers = 128
config.encoder_config.model_dim = 2048
config.encoder_config.ffn_inner_dim = 8192
config.encoder_config.num_encoder_attn_heads = 16
config.quantized_dim = 1024
config.final_dim = 1024
return config
@arch_encoder("7b")
def b7_encoder() -> Wav2Vec2EncoderConfig:
return b7().encoder_config
# @title Create model and load weights
"""Create model and load weights"""
from dataclasses import field
import torch
from fairseq2 import setup_fairseq2
from fairseq2.context import get_runtime_context
from fairseq2.data.text.tokenizers.sentencepiece import RawSentencePieceTokenizer
class Wav2Vec2LlamaConfig:
wav2vec_ctc_config: Wav2Vec2AsrConfig = field()
llama_config: LLaMAConfig = field()
encoder_stacking: int = 1
frozen_encoder: bool = False
def load_mms_model(ckpt_path: str, tokenizer_path: str, device=None):
"""
Load the MMS model and tokenizer from checkpoint files with memory optimization.
Args:
ckpt_path (str): Path to the model checkpoint file
tokenizer_path (str): Path to the tokenizer model file
device: Device to load the model on. If None, auto-detects GPU/CPU
Returns:
tuple: (model, text_decoder, device) where:
- model: The loaded and configured MMS model
- text_decoder: The tokenizer decoder
- device: The device the model is loaded on
"""
import gc
import os
import psutil
logger = logging.getLogger(__name__)
def log_memory_usage(step: str):
"""Log current memory usage."""
process = psutil.Process(os.getpid())
memory_info = process.memory_info()
virtual_memory = psutil.virtual_memory()
logger.info(
f"[{step}] Process RSS: {memory_info.rss / (1024**3):.2f} GB, "
f"System Available: {virtual_memory.available / (1024**3):.2f} GB"
)
logger.info(f"Starting MMS model loading process...")
logger.info(f"Checkpoint path: {ckpt_path}")
logger.info(f"Tokenizer path: {tokenizer_path}")
# Check file size
if os.path.exists(ckpt_path):
ckpt_size_gb = os.path.getsize(ckpt_path) / (1024**3)
logger.info(f"Checkpoint file size: {ckpt_size_gb:.2f} GB")
log_memory_usage("Initial")
# Set device with proper CUDA initialization
if device is None:
try:
# Initialize CUDA context properly
logger.info("Checking CUDA availability...")
if torch.cuda.is_available():
logger.info(
f"CUDA is available. Device count: {torch.cuda.device_count()}"
)
# Initialize CUDA context
torch.cuda.init()
# Set device to first available GPU
device = torch.device("cuda:0")
logger.info(f"CUDA device name: {torch.cuda.get_device_name(0)}")
logger.info(
f"CUDA device memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB"
)
else:
logger.warning("CUDA is not available, falling back to CPU")
device = torch.device("cpu")
except Exception as e:
logger.warning(f"CUDA initialization failed: {e}, falling back to CPU")
device = torch.device("cpu")
else:
device = torch.device("cpu") # Force CPU for memory efficiency
logger.info(f"Using device: {device}")
# Load model parameters from checkpoint with memory optimization
logger.info("Loading model parameters from checkpoint...")
try:
# Try memory-mapped loading first (more memory efficient)
logger.info("Attempting memory-mapped loading...")
model_params = torch.load(ckpt_path, map_location="cpu", mmap=True)
logger.info("✓ Model parameters loaded successfully (memory-mapped)")
except Exception as e:
logger.warning(f"Memory-mapped loading failed: {e}")
logger.info("Falling back to regular loading...")
# Force garbage collection before loading
gc.collect()
model_params = torch.load(ckpt_path, map_location="cpu")
logger.info("✓ Model parameters loaded successfully (regular)")
log_memory_usage("After checkpoint load")
# Create context
logger.info("Setting up fairseq2 context and registering configs...")
setup_fairseq2()
context = get_runtime_context()
try:
register_wav2vec2_configs(context)
register_wav2vec2_asr_configs(context)
logger.info("✓ Configs registered successfully")
except Exception as e:
logger.warning(f"Config registration failed (may already be registered): {e}")
w2v2_ctc_registry = context.get_config_registry(Wav2Vec2AsrConfig)
# Create config
logger.info("Creating model configuration...")
wav2vec_ctc_config = w2v2_ctc_registry.get("7b_bib1143")
logger.info(
f"✓ wav2vec config loaded: vocab_size={wav2vec_ctc_config.vocab_info.size}"
)
llama_config = LLaMAConfig(
model_dim=4096,
max_seq_len=8192,
vocab_info=wav2vec_ctc_config.vocab_info,
num_layers=12,
num_attn_heads=8,
num_key_value_heads=8,
ffn_inner_dim=4096,
rope_theta=10_000.0,
dropout_p=0.1,
)
logger.info(
f"✓ LLaMA config created: model_dim={llama_config.model_dim}, layers={llama_config.num_layers}"
)
config = Wav2Vec2LlamaConfig()
config.wav2vec_ctc_config = wav2vec_ctc_config
config.llama_config = llama_config
# Instantiate model
logger.info("Instantiating model from factory...")
factory = Wav2Vec2LlamaFactory(config)
model = factory.create_model()
logger.info("✓ Model instantiated successfully")
# Load state dict from ckpt
logger.info("Loading model state dictionary...")
model.load_state_dict(model_params["model"])
del model_params
logger.info("✓ Model weights loaded successfully")
# Move to device and set eval mode
logger.info(f"Moving model to device {device} and setting eval mode...")
model = model.to(device).eval()
logger.info("✓ Model moved to device and set to eval mode")
# Create tokenizer
logger.info(f"Creating tokenizer from {tokenizer_path}...")
tokenizer = RawSentencePieceTokenizer(tokenizer_path)
text_decoder_1143 = tokenizer.create_decoder()
logger.info("✓ Tokenizer created successfully")
logger.info("MMS model loading completed successfully!")
return model, text_decoder_1143, device
def prepare_audio_batch(wav_path: str, device, max_duration_seconds=2):
"""
Load a wav file from disk and prepare batch for model inference.
Args:
wav_path (str): Path to the WAV file
device: Device to place the batch on
max_duration_seconds (int): Maximum duration to process (for efficiency)
Returns:
Seq2SeqBatch: Prepared batch for model inference
"""
logger = logging.getLogger(__name__)
logger.info(f"Preparing audio batch from: {wav_path}")
logger.info(f"Max duration: {max_duration_seconds}s, target device: {device}")
# Load the WAV file, resample the data to 16 kHz
logger.info("Loading and resampling audio file...")
data, fs = librosa.load(wav_path)
logger.info(f"Original sample rate: {fs} Hz, duration: {len(data)/fs:.2f}s")
data = librosa.resample(data, orig_sr=fs, target_sr=16000)
logger.info("✓ Audio resampled to 16kHz")
# If the data is multi-channel, merge all channels
if len(data.shape) > 1:
logger.info("Multi-channel audio detected, merging channels...")
data = np.mean(data, axis=0)
else:
data = data
# Cut to specified duration (for efficiency)
if max_duration_seconds > 0:
original_length = len(data)
data = data[: 16000 * max_duration_seconds]
if len(data) < original_length:
logger.info(
f"Audio truncated from {original_length/16000:.2f}s to {len(data)/16000:.2f}s"
)
# Convert to tensor and normalize
logger.info("Converting to tensor and normalizing...")
# Originally data = torch.Tensor(data).to(torch.bfloat16)
data = torch.Tensor(data).float() # Use float32 to match model expectations
data = F.layer_norm(data, data.shape)
# Create batch
logger.info("Creating batch for inference...")
batch = Seq2SeqBatch(
source_seqs=data.unsqueeze(0).to(device),
source_padding_mask=None,
target_seqs=torch.tensor([1], dtype=torch.long)
.unsqueeze(0)
.to(device), # Not used for inference
target_padding_mask=None,
example=[],
)
logger.info(
f"✓ Audio batch prepared successfully, shape: {batch.source_seqs.shape}"
)
return batch
def run_inference(model, batch, text_decoder, config, device):
"""
Run model inference on a prepared batch.
Args:
model: The loaded MMS model
batch: Prepared audio batch
text_decoder: Tokenizer decoder
config: Model configuration
device: Device for inference
Returns:
list: Decoded text outputs
"""
logger = logging.getLogger(__name__)
logger.info("Starting model inference...")
logger.info(f"Input batch shape: {batch.source_seqs.shape}, device: {device}")
with torch.no_grad():
ctx = (
torch.cuda.amp.autocast()
if torch.cuda.is_available()
else torch.cpu.amp.autocast(dtype=torch.bfloat16)
)
logger.info(
f"Using autocast context: {'CUDA' if torch.cuda.is_available() else 'CPU'}"
)
with ctx:
logger.info("Running forward pass...")
output = model(batch)
logger.info("✓ Forward pass completed")
logger.info("Generating hypotheses...")
hyp_seq, hyp_padding_mask = output.generate_hypotheses(
pad_idx=config.llama_config.vocab_info.pad_idx
)
logger.info(f"✓ Generated {len(hyp_seq)} hypotheses")
logger.info("Decoding text...")
results = [text_decoder(s) for s in hyp_seq]
logger.info(f"✓ Inference completed, results: {results}")
return results
def transcribe_audio(
wav_path: str,
ckpt_path: str = None,
tokenizer_path: str = None,
max_duration_seconds=2,
):
"""
Complete pipeline to transcribe audio using MMS model.
Uses the singleton model instance from server.py to avoid reloading.
Args:
wav_path (str): Path to the WAV file
ckpt_path (str): Path to the model checkpoint (not used, kept for compatibility)
tokenizer_path (str): Path to the tokenizer (not used, kept for compatibility)
max_duration_seconds (int): Maximum duration to process
Returns:
tuple: (transcription_results, audio_data) where:
- transcription_results: list of transcribed text
- audio_data: processed audio tensor for reuse in alignment
"""
logger = logging.getLogger(__name__)
logger.info("Starting complete audio transcription pipeline...")
try:
# Get model from singleton (don't reload)
logger.info("Getting pre-loaded MMS model from singleton...")
from server import get_device, get_model, get_text_decoder
model = get_model()
text_decoder = get_text_decoder()
device = get_device()
if model is None or text_decoder is None or device is None:
raise RuntimeError("Model not properly loaded in server singleton")
logger.info(f"✓ Using pre-loaded model on device: {device}")
# Get config (needed for inference)
logger.info("Setting up configuration for inference...")
setup_fairseq2()
context = get_runtime_context()
try:
register_wav2vec2_configs(context)
register_wav2vec2_asr_configs(context)
except Exception as e:
logger.warning(f"Config registration warning: {e}")
w2v2_ctc_registry = context.get_config_registry(Wav2Vec2AsrConfig)
wav2vec_ctc_config = w2v2_ctc_registry.get("7b_bib1143")
llama_config = LLaMAConfig(
model_dim=4096,
max_seq_len=8192,
vocab_info=wav2vec_ctc_config.vocab_info,
num_layers=12,
num_attn_heads=8,
num_key_value_heads=8,
ffn_inner_dim=4096,
rope_theta=10_000.0,
dropout_p=0.1,
)
config = Wav2Vec2LlamaConfig()
config.wav2vec_ctc_config = wav2vec_ctc_config
config.llama_config = llama_config
# Prepare batch
logger.info("Preparing audio batch...")
batch = prepare_audio_batch(wav_path, device, max_duration_seconds)
# Extract the processed audio data for return
audio_data = batch.source_seqs.squeeze(0) # Remove batch dimension
# Run inference
logger.info("Running inference...")
results = run_inference(model, batch, text_decoder, config, device)
logger.info(f"Transcription pipeline completed successfully: {results}")
return results, audio_data
except Exception as e:
logger.error(f"Error in transcription pipeline: {str(e)}", exc_info=True)
raise
def normalize_text_with_uroman(text: str) -> str:
"""
Normalize text using uroman for better forced alignment.
Args:
text (str): Input text to normalize
Returns:
str: Normalized text
"""
logger = logging.getLogger(__name__)
try:
# Use uroman to normalize the text
uroman_instance = uroman.Uroman()
normalized = uroman_instance.romanize_string(text)
logger.info(f"Text normalized: '{text}' -> '{normalized}'")
return normalized
except Exception as e:
logger.warning(f"Failed to normalize text with uroman: {e}")
# Fallback to basic normalization
return text.lower().strip()
def perform_forced_alignment(
audio_data: np.ndarray,
transcription_tokens: List[str],
model,
device,
sample_rate: int = 16000,
) -> List[Dict]:
"""
Perform forced alignment using the AudioAlignment class from audio_sentence_alignment.py.
Uses pre-processed audio data from prepare_audio_batch.
Args:
audio_data (np.ndarray): Pre-processed audio data from prepare_audio_batch
transcription_tokens (List[str]): List of tokens from transcription
model: The loaded MMS model (not used directly, AudioAlignment loads its own)
device: Device for computation
sample_rate (int): Audio sample rate
Returns:
List[Dict]: List of segments with timestamps and text
"""
logger = logging.getLogger(__name__)
try:
logger.info(f"Starting forced alignment with pre-processed audio data")
logger.info(f"Audio shape: {audio_data.shape}, sample_rate: {sample_rate}")
logger.info(f"Tokens to align: {transcription_tokens}")
from audio_reading_tools import wav_to_bytes
# Import AudioAlignment and its config classes
from audio_sentence_alignment import (
AlignmentStruct,
AudioAlignment,
AudioAlignmentConfig,
)
# Use the pre-processed audio data directly
# Convert to the format expected by AudioAlignment.get_one_row_alignments
if hasattr(audio_data, "cpu"):
# If it's a torch tensor, use it directly
audio_tensor = audio_data.float()
else:
# If it's numpy, convert to tensor
audio_tensor = torch.from_numpy(audio_data).float()
# Ensure it's 1D (flatten if needed)
if len(audio_tensor.shape) > 1:
audio_tensor = audio_tensor.flatten()
# Convert audio tensor to bytes format expected by AudioAlignment
# Use wav_to_bytes to create proper audio bytes
audio_arr = wav_to_bytes(audio_tensor, sample_rate=sample_rate, format="wav")
logger.info(
f"Converted audio to bytes: shape={audio_arr.shape}, dtype={audio_arr.dtype}"
)
# Preprocess tokens for MMS alignment model using the same approach as TextRomanizer
# The MMS alignment model expects romanized tokens in the same format as text_sentences_tokens
try:
# Join tokens back to text for uroman processing
transcription_text = " ".join(transcription_tokens)
# Import the required functions from TextRomanizer pipeline
from align_utils import get_uroman_tokens
from text_normalization import text_normalize
# Create uroman instance and process the text the same way as TextRomanizer
uroman_instance = uroman.Uroman()
# Step 1: Normalize the text first using text_normalize function (same as TextRomanizer)
normalized_text = text_normalize(transcription_text.strip(), "en")
# Step 2: Get uroman tokens using the same function as TextRomanizer
# This creates character-level tokens with spaces between characters
uroman_tokens_str = get_uroman_tokens(
[normalized_text], uroman_instance, "en"
)[0]
# Step 3: Split by spaces to get individual character tokens (same as real MMS pipeline)
alignment_tokens = uroman_tokens_str.split()
logger.info(f"Original tokens: {transcription_tokens}")
logger.info(f"Original text: '{transcription_text}'")
logger.info(f"Normalized text: '{normalized_text}'")
logger.info(f"Uroman tokens string: '{uroman_tokens_str}'")
logger.info(
f"Alignment tokens (count={len(alignment_tokens)}): {alignment_tokens[:20]}..."
)
# Additional debugging - check for any unusual characters
for i, token in enumerate(alignment_tokens[:10]): # Check first 10 tokens
logger.info(
f"Token {i}: '{token}' (length={len(token)}, chars={[c for c in token]})"
)
except Exception as e:
logger.warning(
f"Failed to preprocess tokens with TextRomanizer approach: {e}"
)
logger.exception("Full error traceback:")
# Fallback: use simple character-level tokenization
transcription_text = " ".join(transcription_tokens).lower()
# Simple character-level tokenization as fallback
alignment_tokens = []
for char in transcription_text:
if char == " ":
alignment_tokens.append(" ")
else:
alignment_tokens.append(char)
logger.info(f"Using fallback character tokens: {alignment_tokens[:20]}...")
logger.info(
f"Using {len(alignment_tokens)} alignment tokens for forced alignment"
)
# Create alignment configuration
alignment_struct = AlignmentStruct(
segement_tokens="tokens",
audio="audio",
)
config = AudioAlignmentConfig(
alignment_column=alignment_struct,
sample_rate=sample_rate,
device=str(device),
use_star=False, # Set to False for standard alignment
)
# Create AudioAlignment instance
logger.info("Creating AudioAlignment instance...")
alignment = AudioAlignment(config)
# Perform alignment using get_one_row_alignments
logger.info("Performing alignment...")
logger.info(f"About to call get_one_row_alignments with:")
logger.info(f" audio_arr type: {type(audio_arr)}, shape: {audio_arr.shape}")
logger.info(
f" alignment_tokens type: {type(alignment_tokens)}, length: {len(alignment_tokens)}"
)
logger.info(
f" First 10 tokens: {alignment_tokens[:10] if len(alignment_tokens) >= 10 else alignment_tokens}"
)
# Check for any problematic characters in tokens
for i, token in enumerate(alignment_tokens[:5]):
token_chars = [ord(c) for c in str(token)]
logger.info(f" Token {i} '{token}' char codes: {token_chars}")
# Check if tokens contain any RTL characters that might cause the LTR assertion
rtl_chars = []
for i, token in enumerate(alignment_tokens):
for char in str(token):
# Check for Arabic, Hebrew, and other RTL characters
if (
"\u0590" <= char <= "\u08ff"
or "\ufb1d" <= char <= "\ufdff"
or "\ufe70" <= char <= "\ufeff"
):
rtl_chars.append((i, token, char, ord(char)))
if rtl_chars:
logger.warning(f"Found RTL characters in tokens: {rtl_chars[:10]}...")
try:
audio_segments = alignment.get_one_row_alignments(
audio_arr, alignment_tokens
)
except Exception as alignment_error:
logger.error(f"Alignment failed with error: {alignment_error}")
logger.error(f"Error type: {type(alignment_error)}")
# Try to provide more context about the error
if "ltr" in str(alignment_error).lower():
logger.error("LTR assertion error detected. This might be due to:")
logger.error("1. RTL characters in the input tokens")
logger.error(
"2. Incorrect token format - tokens should be individual characters"
)
logger.error("3. Unicode normalization issues")
# Try a simple ASCII-only fallback
logger.info("Attempting ASCII-only fallback...")
ascii_tokens = []
for token in alignment_tokens:
# Keep only ASCII characters
ascii_token = "".join(c for c in str(token) if ord(c) < 128)
if ascii_token:
ascii_tokens.append(ascii_token)
logger.info(
f"ASCII tokens (count={len(ascii_tokens)}): {ascii_tokens[:20]}..."
)
try:
audio_segments = alignment.get_one_row_alignments(
audio_arr, ascii_tokens
)
alignment_tokens = ascii_tokens # Update for later use
logger.info("ASCII fallback successful!")
except Exception as ascii_error:
logger.error(f"ASCII fallback also failed: {ascii_error}")
raise alignment_error
else:
raise
logger.info(
f"Alignment completed, got {len(audio_segments)} character segments"
)
# Convert character-level segments back to word-level segments
# Map character segments to original word tokens
aligned_segments = []
transcription_text = " ".join(transcription_tokens)
word_idx = 0
char_idx = 0
for word in transcription_tokens:
if word_idx >= len(transcription_tokens):
break
# Find the start and end character indices for this word
word_start_char = char_idx
word_end_char = char_idx + len(word)
# Find corresponding segments within this character range
word_segments = []
for seg_idx, segment in enumerate(audio_segments):
if seg_idx >= word_start_char and seg_idx < word_end_char:
word_segments.append(segment)
if word_segments:
# Get timing from first and last character segments of the word
start_time = word_segments[0][alignment_struct.segment_start_sec]
last_segment = word_segments[-1]
end_time = (
last_segment[alignment_struct.segment_start_sec]
+ last_segment[alignment_struct.segment_duration]
)
duration = end_time - start_time
else:
# Fallback timing if no segments found
if word_idx < len(audio_segments):
segment = audio_segments[min(word_idx, len(audio_segments) - 1)]
start_time = segment[alignment_struct.segment_start_sec]
duration = segment[alignment_struct.segment_duration]
end_time = start_time + duration
else:
# Final fallback
duration = 0.5 # Default duration
start_time = word_idx * duration
end_time = start_time + duration
aligned_segments.append(
{
"text": word,
"start": start_time,
"end": end_time,
"duration": duration,
}
)
logger.info(
f"Word '{word}': {start_time:.3f}s - {end_time:.3f}s ({duration:.3f}s)"
)
# Update indices
char_idx += len(word)
if (
char_idx < len(transcription_text)
and transcription_text[char_idx] == " "
):
char_idx += 1 # Skip space
word_idx += 1
logger.info(f"Forced alignment completed: {len(aligned_segments)} segments")
return aligned_segments
except Exception as e:
logger.error(f"Error in forced alignment: {str(e)}", exc_info=True)
# Fallback: create uniform timestamps based on audio data length
logger.info("Using fallback uniform timestamps")
try:
# Calculate duration from the audio data
total_duration = (
len(audio_data) / sample_rate
if len(audio_data) > 0
else len(transcription_tokens) * 0.5
)
except:
total_duration = len(transcription_tokens) * 0.5 # Fallback
segment_duration = (
total_duration / len(transcription_tokens) if transcription_tokens else 1.0
)
fallback_segments = []
for i, token in enumerate(transcription_tokens):
start_time = i * segment_duration
end_time = (i + 1) * segment_duration
fallback_segments.append(
{
"text": token,
"start": start_time,
"end": end_time,
"duration": segment_duration,
}
)
logger.info(
f"Using fallback uniform timestamps: {len(fallback_segments)} segments"
)
return fallback_segments
def transcribe_audio_with_alignment(
wav_path: str,
ckpt_path: str = None,
tokenizer_path: str = None,
max_duration_seconds: int = 2,
) -> Dict:
"""
Complete pipeline to transcribe audio and perform forced alignment.
Uses pre-processed audio data from prepare_audio_batch for both steps.
Args:
wav_path (str): Path to the WAV file
ckpt_path (str): Path to the model checkpoint (not used, kept for compatibility)
tokenizer_path (str): Path to the tokenizer (not used, kept for compatibility)
max_duration_seconds (int): Maximum duration to process
Returns:
Dict: Transcription results with alignment information
"""
logger = logging.getLogger(__name__)
try:
# Get model and device first
from server import get_device, get_model
model = get_model()
device = get_device()
if model is None or device is None:
logger.warning(
"Model not available for alignment, returning transcription only"
)
# Get the transcription and processed audio data
transcription_results, audio_data = transcribe_audio(
wav_path, ckpt_path, tokenizer_path, max_duration_seconds
)
if not transcription_results:
return {
"transcription": "",
"tokens": [],
"aligned_segments": [],
"total_duration": 0.0,
}
transcription_text = (
transcription_results[0]
if isinstance(transcription_results, list)
else str(transcription_results)
)
# Tokenize the transcription for alignment
tokens = transcription_text.split() if transcription_text else []
# Perform forced alignment using the same preprocessed audio data
logger.info("Performing forced alignment with preprocessed audio...")
aligned_segments = perform_forced_alignment(audio_data, tokens, model, device)
# Calculate total duration
total_duration = aligned_segments[-1]["end"] if aligned_segments else 0.0
result = {
"transcription": transcription_text,
"tokens": tokens,
"aligned_segments": aligned_segments,
"total_duration": total_duration,
"num_segments": len(aligned_segments),
}
logger.info(
f"Transcription with alignment completed: {len(aligned_segments)} segments, {total_duration:.2f}s total"
)
return result
except Exception as e:
logger.error(f"Error in transcription with alignment: {str(e)}", exc_info=True)
# Return basic transcription without alignment
try:
transcription_results, _ = transcribe_audio(
wav_path, ckpt_path, tokenizer_path, max_duration_seconds
)
transcription_text = (
transcription_results[0] if transcription_results else ""
)
tokens = transcription_text.split() if transcription_text else []
return {
"transcription": transcription_text,
"tokens": tokens,
"aligned_segments": [],
"total_duration": 0.0,
"alignment_error": str(e),
}
except Exception as e2:
logger.error(f"Error in fallback transcription: {str(e2)}", exc_info=True)
return {
"transcription": "",
"tokens": [],
"aligned_segments": [],
"total_duration": 0.0,
"error": str(e2),
}