Spaces:
Sleeping
Sleeping
File size: 11,477 Bytes
ff17e47 fb00a86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import gradio as gr
import json
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, TFAutoModelForSeq2SeqLM
# --- Model Loading ---
# Summarization model (BART)
def load_summarizer():
model_name = "VidhuMathur/bart-log-summarization"
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
summarizer = pipeline(
"summarization",
model=model,
tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1,
)
return summarizer
# Causal LM for analysis (Qwen)
def load_qwen():
model_name = "Qwen/Qwen3-0.6B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
return model, tokenizer
# --- Core Pipeline Functions ---
def extract_json_simple(text):
start = text.find('{')
if start == -1:
return None
brace_count = 0
end = start
for i, char in enumerate(text[start:], start):
if char == '{':
brace_count += 1
elif char == '}':
brace_count -= 1
if brace_count == 0:
end = i + 1
break
if brace_count == 0:
return text[start:end]
return None
def ensure_required_keys(analysis, summary):
required_keys = {
"root_cause": f"Issue identified from log analysis: {summary[:100]}...",
"debugging_steps": [
"Check system logs for error patterns",
"Verify service status and configuration",
"Test connectivity and permissions"
],
"debug_commands": [
"systemctl status service-name",
"journalctl -u service-name -n 50",
"netstat -tlnp | grep port"
],
"useful_links": [
"https://docs.system-docs.com/troubleshooting",
"https://stackoverflow.com/questions/tagged/debugging"
]
}
for key, default_value in required_keys.items():
if key not in analysis or not analysis[key]:
analysis[key] = default_value
elif isinstance(analysis[key], list) and len(analysis[key]) == 0:
analysis[key] = default_value
return analysis
def create_fallback_analysis(summary):
summary_lower = summary.lower()
if any(word in summary_lower for word in ['database', 'connection', 'sql']):
return {
"root_cause": "Database connection issue detected in the logs",
"debugging_steps": [
"Check if database service is running",
"Verify database connection parameters",
"Test network connectivity to database server",
"Check database user permissions"
],
"debug_commands": [
"sudo systemctl status postgresql",
"netstat -an | grep 5432",
"psql -U username -h host -d database",
"ping database-host"
],
"useful_links": [
"https://www.postgresql.org/docs/current/runtime.html",
"https://dev.mysql.com/doc/refman/8.0/en/troubleshooting.html"
]
}
elif any(word in summary_lower for word in ['memory', 'heap', 'oom']):
return {
"root_cause": "Memory exhaustion or memory leak detected",
"debugging_steps": [
"Monitor current memory usage",
"Check for memory leaks in application",
"Review JVM heap settings if Java application",
"Analyze memory dump if available"
],
"debug_commands": [
"free -h",
"top -o %MEM",
"jstat -gc PID",
"ps aux --sort=-%mem | head"
],
"useful_links": [
"https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/memleaks.html",
"https://linux.die.net/man/1/free"
]
}
elif any(word in summary_lower for word in ['disk', 'space', 'full']):
return {
"root_cause": "Disk space exhaustion causing system issues",
"debugging_steps": [
"Check disk usage across all filesystems",
"Identify largest files and directories",
"Clean up temporary files and logs",
"Check for deleted files held by processes"
],
"debug_commands": [
"df -h",
"du -sh /* | sort -hr",
"find /var/log -type f -size +100M",
"lsof +L1"
],
"useful_links": [
"https://linux.die.net/man/1/df",
"https://www.cyberciti.biz/faq/linux-check-disk-space-command/"
]
}
else:
return {
"root_cause": f"System issue detected: {summary[:100]}...",
"debugging_steps": [
"Review complete error logs",
"Check system resource usage",
"Verify service configurations",
"Test system connectivity"
],
"debug_commands": [
"systemctl --failed",
"journalctl -p err -n 50",
"htop",
"netstat -tlnp"
],
"useful_links": [
"https://linux.die.net/man/1/systemctl",
"https://www.freedesktop.org/software/systemd/man/journalctl.html"
]
}
def log_processing_pipeline(raw_log, summarizer, model, tokenizer):
results = {
'raw_log': raw_log,
'summary': None,
'analysis': None,
'success': False,
'errors': []
}
# Step 1: Summarization
try:
summary_result = summarizer(raw_log, max_length=350, min_length=40, do_sample=False)
summary_text = summary_result[0]['summary_text']
results['summary'] = summary_text
except Exception as e:
results['errors'].append(f"Summarization failed: {e}")
return results
# Step 2: Analysis
success = False
attempts = 0
max_attempts = 2
while not success and attempts < max_attempts:
attempts += 1
prompt = f"""Analyze this log summary and respond with ONLY a JSON object:\n\nLog: {summary_text}\n\nRequired JSON format:\n{{\n \"root_cause\": \"explain the main problem\",\n \"debugging_steps\": [\"step 1\", \"step 2\", \"step 3\"],\n \"debug_commands\": [\"command1\", \"command2\", \"command3\"],\n \"useful_links\": [\"link1\", \"link2\"]\n}}\n\nJSON:"""
try:
inputs = tokenizer(prompt, return_tensors="pt", max_length=800, truncation=True)
device = next(model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=300,
temperature=0.2,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=1.1
)
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
json_str = extract_json_simple(response)
if json_str:
try:
parsed = json.loads(json_str)
fixed_analysis = ensure_required_keys(parsed, summary_text)
results['analysis'] = fixed_analysis
results['success'] = True
success = True
except json.JSONDecodeError:
if attempts == max_attempts:
results['errors'].append(f"JSON parsing failed after {attempts} attempts")
else:
if attempts == max_attempts:
results['errors'].append("No valid JSON found in response")
except Exception as e:
if attempts == max_attempts:
results['errors'].append(f"Generation failed: {e}")
if not results['success']:
results['analysis'] = create_fallback_analysis(summary_text)
results['success'] = True
results['errors'].append("Used fallback analysis due to model issues")
return results
# --- Gradio Interface ---
def process_log_file(file_obj, summarizer, model, tokenizer):
if file_obj is None:
return ("No file uploaded", "", "", "", "")
try:
encodings = ['utf-8', 'latin-1', 'cp1252', 'iso-8859-1']
log_content = None
for encoding in encodings:
try:
with open(file_obj.name, 'r', encoding=encoding) as f:
log_content = f.read()
break
except UnicodeDecodeError:
continue
if log_content is None:
return ("Encoding error", "", "", "", "")
if not log_content.strip():
return ("Empty file", "", "", "", "")
if len(log_content) > 100000:
log_content = log_content[:100000] + "\n... (file truncated)"
results = log_processing_pipeline(log_content, summarizer, model, tokenizer)
if results['success']:
analysis = results['analysis']
return (
"Analysis complete",
results['summary'],
analysis.get('root_cause', ''),
'\n'.join(analysis.get('debugging_steps', [])),
'\n'.join(analysis.get('debug_commands', [])),
'\n'.join(analysis.get('useful_links', [])),
json.dumps(results, indent=2)
)
else:
return ("Analysis failed", "", "", "", "")
except Exception as e:
return (f"Processing error: {str(e)}", "", "", "", "")
def main():
summarizer = load_summarizer()
model, tokenizer = load_qwen()
with gr.Blocks(title="Minimal LogLens") as app:
gr.Markdown("# Minimal LogLens Log Analyzer")
file_input = gr.File(label="Upload Log File", file_types=[".txt", ".log", ".out", ".err"], type="filepath")
analyze_btn = gr.Button("Analyze Log")
status = gr.Textbox(label="Status", interactive=False)
summary = gr.Textbox(label="Summary", lines=3, interactive=False)
root_cause = gr.Textbox(label="Root Cause", lines=2, interactive=False)
debug_steps = gr.Textbox(label="Debugging Steps", lines=4, interactive=False)
debug_commands = gr.Textbox(label="Debug Commands", lines=4, interactive=False)
useful_links = gr.Textbox(label="Useful Links", lines=2, interactive=False)
json_output = gr.Code(label="Full JSON Output", language="json", interactive=False)
analyze_btn.click(
fn=lambda f: process_log_file(f, summarizer, model, tokenizer),
inputs=file_input,
outputs=[status, summary, root_cause, debug_steps, debug_commands, useful_links, json_output]
)
app.launch()
if __name__ == "__main__":
main() |