fixed rmvpe infer pipelines
Browse files- vc_infer_pipeline.py +20 -223
vc_infer_pipeline.py
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
import numpy as np, parselmouth, torch, pdb, sys, os
|
| 2 |
from time import time as ttime
|
| 3 |
import torch.nn.functional as F
|
| 4 |
-
import torchcrepe # Fork feature. Use the crepe f0 algorithm. New dependency (pip install torchcrepe)
|
| 5 |
-
from torch import Tensor
|
| 6 |
import scipy.signal as signal
|
| 7 |
import pyworld, os, traceback, faiss, librosa, torchcrepe
|
| 8 |
from scipy import signal
|
|
@@ -71,186 +69,6 @@ class VC(object):
|
|
| 71 |
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
| 72 |
self.device = config.device
|
| 73 |
|
| 74 |
-
# Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
|
| 75 |
-
def get_optimal_torch_device(self, index: int = 0) -> torch.device:
|
| 76 |
-
# Get cuda device
|
| 77 |
-
if torch.cuda.is_available():
|
| 78 |
-
return torch.device(
|
| 79 |
-
f"cuda:{index % torch.cuda.device_count()}"
|
| 80 |
-
) # Very fast
|
| 81 |
-
elif torch.backends.mps.is_available():
|
| 82 |
-
return torch.device("mps")
|
| 83 |
-
# Insert an else here to grab "xla" devices if available. TO DO later. Requires the torch_xla.core.xla_model library
|
| 84 |
-
# Else wise return the "cpu" as a torch device,
|
| 85 |
-
return torch.device("cpu")
|
| 86 |
-
|
| 87 |
-
# Fork Feature: Compute f0 with the crepe method
|
| 88 |
-
def get_f0_crepe_computation(
|
| 89 |
-
self,
|
| 90 |
-
x,
|
| 91 |
-
f0_min,
|
| 92 |
-
f0_max,
|
| 93 |
-
p_len,
|
| 94 |
-
hop_length=160, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
|
| 95 |
-
model="full", # Either use crepe-tiny "tiny" or crepe "full". Default is full
|
| 96 |
-
):
|
| 97 |
-
x = x.astype(
|
| 98 |
-
np.float32
|
| 99 |
-
) # fixes the F.conv2D exception. We needed to convert double to float.
|
| 100 |
-
x /= np.quantile(np.abs(x), 0.999)
|
| 101 |
-
torch_device = self.get_optimal_torch_device()
|
| 102 |
-
audio = torch.from_numpy(x).to(torch_device, copy=True)
|
| 103 |
-
audio = torch.unsqueeze(audio, dim=0)
|
| 104 |
-
if audio.ndim == 2 and audio.shape[0] > 1:
|
| 105 |
-
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
| 106 |
-
audio = audio.detach()
|
| 107 |
-
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
|
| 108 |
-
pitch: Tensor = torchcrepe.predict(
|
| 109 |
-
audio,
|
| 110 |
-
self.sr,
|
| 111 |
-
hop_length,
|
| 112 |
-
f0_min,
|
| 113 |
-
f0_max,
|
| 114 |
-
model,
|
| 115 |
-
batch_size=hop_length * 2,
|
| 116 |
-
device=torch_device,
|
| 117 |
-
pad=True,
|
| 118 |
-
)
|
| 119 |
-
p_len = p_len or x.shape[0] // hop_length
|
| 120 |
-
# Resize the pitch for final f0
|
| 121 |
-
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
| 122 |
-
source[source < 0.001] = np.nan
|
| 123 |
-
target = np.interp(
|
| 124 |
-
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
| 125 |
-
np.arange(0, len(source)),
|
| 126 |
-
source,
|
| 127 |
-
)
|
| 128 |
-
f0 = np.nan_to_num(target)
|
| 129 |
-
return f0 # Resized f0
|
| 130 |
-
|
| 131 |
-
def get_f0_official_crepe_computation(
|
| 132 |
-
self,
|
| 133 |
-
x,
|
| 134 |
-
f0_min,
|
| 135 |
-
f0_max,
|
| 136 |
-
model="full",
|
| 137 |
-
):
|
| 138 |
-
# Pick a batch size that doesn't cause memory errors on your gpu
|
| 139 |
-
batch_size = 512
|
| 140 |
-
# Compute pitch using first gpu
|
| 141 |
-
audio = torch.tensor(np.copy(x))[None].float()
|
| 142 |
-
f0, pd = torchcrepe.predict(
|
| 143 |
-
audio,
|
| 144 |
-
self.sr,
|
| 145 |
-
self.window,
|
| 146 |
-
f0_min,
|
| 147 |
-
f0_max,
|
| 148 |
-
model,
|
| 149 |
-
batch_size=batch_size,
|
| 150 |
-
device=self.device,
|
| 151 |
-
return_periodicity=True,
|
| 152 |
-
)
|
| 153 |
-
pd = torchcrepe.filter.median(pd, 3)
|
| 154 |
-
f0 = torchcrepe.filter.mean(f0, 3)
|
| 155 |
-
f0[pd < 0.1] = 0
|
| 156 |
-
f0 = f0[0].cpu().numpy()
|
| 157 |
-
return f0
|
| 158 |
-
|
| 159 |
-
# Fork Feature: Compute pYIN f0 method
|
| 160 |
-
def get_f0_pyin_computation(self, x, f0_min, f0_max):
|
| 161 |
-
y, sr = librosa.load("saudio/Sidney.wav", self.sr, mono=True)
|
| 162 |
-
f0, _, _ = librosa.pyin(y, sr=self.sr, fmin=f0_min, fmax=f0_max)
|
| 163 |
-
f0 = f0[1:] # Get rid of extra first frame
|
| 164 |
-
return f0
|
| 165 |
-
|
| 166 |
-
# Fork Feature: Acquire median hybrid f0 estimation calculation
|
| 167 |
-
def get_f0_hybrid_computation(
|
| 168 |
-
self,
|
| 169 |
-
methods_str,
|
| 170 |
-
input_audio_path,
|
| 171 |
-
x,
|
| 172 |
-
f0_min,
|
| 173 |
-
f0_max,
|
| 174 |
-
p_len,
|
| 175 |
-
filter_radius,
|
| 176 |
-
crepe_hop_length,
|
| 177 |
-
time_step,
|
| 178 |
-
):
|
| 179 |
-
# Get various f0 methods from input to use in the computation stack
|
| 180 |
-
s = methods_str
|
| 181 |
-
s = s.split("hybrid")[1]
|
| 182 |
-
s = s.replace("[", "").replace("]", "")
|
| 183 |
-
methods = s.split("+")
|
| 184 |
-
f0_computation_stack = []
|
| 185 |
-
|
| 186 |
-
print("Calculating f0 pitch estimations for methods: %s" % str(methods))
|
| 187 |
-
x = x.astype(np.float32)
|
| 188 |
-
x /= np.quantile(np.abs(x), 0.999)
|
| 189 |
-
# Get f0 calculations for all methods specified
|
| 190 |
-
for method in methods:
|
| 191 |
-
f0 = None
|
| 192 |
-
if method == "pm":
|
| 193 |
-
f0 = (
|
| 194 |
-
parselmouth.Sound(x, self.sr)
|
| 195 |
-
.to_pitch_ac(
|
| 196 |
-
time_step=time_step / 1000,
|
| 197 |
-
voicing_threshold=0.6,
|
| 198 |
-
pitch_floor=f0_min,
|
| 199 |
-
pitch_ceiling=f0_max,
|
| 200 |
-
)
|
| 201 |
-
.selected_array["frequency"]
|
| 202 |
-
)
|
| 203 |
-
pad_size = (p_len - len(f0) + 1) // 2
|
| 204 |
-
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
| 205 |
-
f0 = np.pad(
|
| 206 |
-
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
| 207 |
-
)
|
| 208 |
-
elif method == "crepe":
|
| 209 |
-
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
|
| 210 |
-
f0 = f0[1:] # Get rid of extra first frame
|
| 211 |
-
elif method == "crepe-tiny":
|
| 212 |
-
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
|
| 213 |
-
f0 = f0[1:] # Get rid of extra first frame
|
| 214 |
-
elif method == "mangio-crepe":
|
| 215 |
-
f0 = self.get_f0_crepe_computation(
|
| 216 |
-
x, f0_min, f0_max, p_len, crepe_hop_length
|
| 217 |
-
)
|
| 218 |
-
elif method == "mangio-crepe-tiny":
|
| 219 |
-
f0 = self.get_f0_crepe_computation(
|
| 220 |
-
x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
|
| 221 |
-
)
|
| 222 |
-
elif method == "harvest":
|
| 223 |
-
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
| 224 |
-
if filter_radius > 2:
|
| 225 |
-
f0 = signal.medfilt(f0, 3)
|
| 226 |
-
f0 = f0[1:] # Get rid of first frame.
|
| 227 |
-
elif method == "dio": # Potentially buggy?
|
| 228 |
-
f0, t = pyworld.dio(
|
| 229 |
-
x.astype(np.double),
|
| 230 |
-
fs=self.sr,
|
| 231 |
-
f0_ceil=f0_max,
|
| 232 |
-
f0_floor=f0_min,
|
| 233 |
-
frame_period=10,
|
| 234 |
-
)
|
| 235 |
-
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
| 236 |
-
f0 = signal.medfilt(f0, 3)
|
| 237 |
-
f0 = f0[1:]
|
| 238 |
-
# elif method == "pyin": Not Working just yet
|
| 239 |
-
# f0 = self.get_f0_pyin_computation(x, f0_min, f0_max)
|
| 240 |
-
# Push method to the stack
|
| 241 |
-
f0_computation_stack.append(f0)
|
| 242 |
-
|
| 243 |
-
for fc in f0_computation_stack:
|
| 244 |
-
print(len(fc))
|
| 245 |
-
|
| 246 |
-
print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
|
| 247 |
-
f0_median_hybrid = None
|
| 248 |
-
if len(f0_computation_stack) == 1:
|
| 249 |
-
f0_median_hybrid = f0_computation_stack[0]
|
| 250 |
-
else:
|
| 251 |
-
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
|
| 252 |
-
return f0_median_hybrid
|
| 253 |
-
|
| 254 |
def get_f0(
|
| 255 |
self,
|
| 256 |
input_audio_path,
|
|
@@ -259,7 +77,6 @@ class VC(object):
|
|
| 259 |
f0_up_key,
|
| 260 |
f0_method,
|
| 261 |
filter_radius,
|
| 262 |
-
crepe_hop_length,
|
| 263 |
inp_f0=None,
|
| 264 |
):
|
| 265 |
global input_audio_path2wav
|
|
@@ -289,28 +106,27 @@ class VC(object):
|
|
| 289 |
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
| 290 |
if filter_radius > 2:
|
| 291 |
f0 = signal.medfilt(f0, 3)
|
| 292 |
-
elif f0_method == "dio": # Potentially Buggy?
|
| 293 |
-
f0, t = pyworld.dio(
|
| 294 |
-
x.astype(np.double),
|
| 295 |
-
fs=self.sr,
|
| 296 |
-
f0_ceil=f0_max,
|
| 297 |
-
f0_floor=f0_min,
|
| 298 |
-
frame_period=10,
|
| 299 |
-
)
|
| 300 |
-
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
| 301 |
-
f0 = signal.medfilt(f0, 3)
|
| 302 |
elif f0_method == "crepe":
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
elif f0_method == "rmvpe":
|
| 315 |
if hasattr(self, "model_rmvpe") == False:
|
| 316 |
from rmvpe import RMVPE
|
|
@@ -320,22 +136,6 @@ class VC(object):
|
|
| 320 |
"rmvpe.pt", is_half=self.is_half, device=self.device
|
| 321 |
)
|
| 322 |
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
| 323 |
-
|
| 324 |
-
elif "hybrid" in f0_method:
|
| 325 |
-
# Perform hybrid median pitch estimation
|
| 326 |
-
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
| 327 |
-
f0 = self.get_f0_hybrid_computation(
|
| 328 |
-
f0_method,
|
| 329 |
-
input_audio_path,
|
| 330 |
-
x,
|
| 331 |
-
f0_min,
|
| 332 |
-
f0_max,
|
| 333 |
-
p_len,
|
| 334 |
-
filter_radius,
|
| 335 |
-
crepe_hop_length,
|
| 336 |
-
time_step,
|
| 337 |
-
)
|
| 338 |
-
|
| 339 |
f0 *= pow(2, f0_up_key / 12)
|
| 340 |
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
| 341 |
tf0 = self.sr // self.window # 每秒f0点数
|
|
@@ -359,7 +159,6 @@ class VC(object):
|
|
| 359 |
f0_mel[f0_mel <= 1] = 1
|
| 360 |
f0_mel[f0_mel > 255] = 255
|
| 361 |
f0_coarse = np.rint(f0_mel).astype(np.int)
|
| 362 |
-
|
| 363 |
return f0_coarse, f0bak # 1-0
|
| 364 |
|
| 365 |
def vc(
|
|
@@ -484,7 +283,6 @@ class VC(object):
|
|
| 484 |
rms_mix_rate,
|
| 485 |
version,
|
| 486 |
protect,
|
| 487 |
-
crepe_hop_length,
|
| 488 |
f0_file=None,
|
| 489 |
):
|
| 490 |
if (
|
|
@@ -546,7 +344,6 @@ class VC(object):
|
|
| 546 |
f0_up_key,
|
| 547 |
f0_method,
|
| 548 |
filter_radius,
|
| 549 |
-
crepe_hop_length,
|
| 550 |
inp_f0,
|
| 551 |
)
|
| 552 |
pitch = pitch[:p_len]
|
|
@@ -643,4 +440,4 @@ class VC(object):
|
|
| 643 |
del pitch, pitchf, sid
|
| 644 |
if torch.cuda.is_available():
|
| 645 |
torch.cuda.empty_cache()
|
| 646 |
-
return audio_opt
|
|
|
|
| 1 |
import numpy as np, parselmouth, torch, pdb, sys, os
|
| 2 |
from time import time as ttime
|
| 3 |
import torch.nn.functional as F
|
|
|
|
|
|
|
| 4 |
import scipy.signal as signal
|
| 5 |
import pyworld, os, traceback, faiss, librosa, torchcrepe
|
| 6 |
from scipy import signal
|
|
|
|
| 69 |
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
| 70 |
self.device = config.device
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
def get_f0(
|
| 73 |
self,
|
| 74 |
input_audio_path,
|
|
|
|
| 77 |
f0_up_key,
|
| 78 |
f0_method,
|
| 79 |
filter_radius,
|
|
|
|
| 80 |
inp_f0=None,
|
| 81 |
):
|
| 82 |
global input_audio_path2wav
|
|
|
|
| 106 |
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
| 107 |
if filter_radius > 2:
|
| 108 |
f0 = signal.medfilt(f0, 3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
elif f0_method == "crepe":
|
| 110 |
+
model = "full"
|
| 111 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
| 112 |
+
batch_size = 512
|
| 113 |
+
# Compute pitch using first gpu
|
| 114 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
| 115 |
+
f0, pd = torchcrepe.predict(
|
| 116 |
+
audio,
|
| 117 |
+
self.sr,
|
| 118 |
+
self.window,
|
| 119 |
+
f0_min,
|
| 120 |
+
f0_max,
|
| 121 |
+
model,
|
| 122 |
+
batch_size=batch_size,
|
| 123 |
+
device=self.device,
|
| 124 |
+
return_periodicity=True,
|
| 125 |
)
|
| 126 |
+
pd = torchcrepe.filter.median(pd, 3)
|
| 127 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
| 128 |
+
f0[pd < 0.1] = 0
|
| 129 |
+
f0 = f0[0].cpu().numpy()
|
| 130 |
elif f0_method == "rmvpe":
|
| 131 |
if hasattr(self, "model_rmvpe") == False:
|
| 132 |
from rmvpe import RMVPE
|
|
|
|
| 136 |
"rmvpe.pt", is_half=self.is_half, device=self.device
|
| 137 |
)
|
| 138 |
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
f0 *= pow(2, f0_up_key / 12)
|
| 140 |
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
| 141 |
tf0 = self.sr // self.window # 每秒f0点数
|
|
|
|
| 159 |
f0_mel[f0_mel <= 1] = 1
|
| 160 |
f0_mel[f0_mel > 255] = 255
|
| 161 |
f0_coarse = np.rint(f0_mel).astype(np.int)
|
|
|
|
| 162 |
return f0_coarse, f0bak # 1-0
|
| 163 |
|
| 164 |
def vc(
|
|
|
|
| 283 |
rms_mix_rate,
|
| 284 |
version,
|
| 285 |
protect,
|
|
|
|
| 286 |
f0_file=None,
|
| 287 |
):
|
| 288 |
if (
|
|
|
|
| 344 |
f0_up_key,
|
| 345 |
f0_method,
|
| 346 |
filter_radius,
|
|
|
|
| 347 |
inp_f0,
|
| 348 |
)
|
| 349 |
pitch = pitch[:p_len]
|
|
|
|
| 440 |
del pitch, pitchf, sid
|
| 441 |
if torch.cuda.is_available():
|
| 442 |
torch.cuda.empty_cache()
|
| 443 |
+
return audio_opt
|