Spaces:
Runtime error
Runtime error
Mehdi Cherti
commited on
Commit
·
23d6920
1
Parent(s):
bc53ac3
- support different preprocessing
Browse files- add shuffling to wds
- support cross attention for discr in training
-
- scripts/init.sh +4 -1
- train_ddgan.py +59 -59
scripts/init.sh
CHANGED
|
@@ -8,7 +8,10 @@ if [[ "$machine" == jurecadc ]]; then
|
|
| 8 |
ml OpenMPI/4.1.2
|
| 9 |
ml CUDA/11.5
|
| 10 |
ml cuDNN/8.3.1.22-CUDA-11.5
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
| 12 |
ml PyTorch/1.11-CUDA-11.5
|
| 13 |
ml Horovod/0.24
|
| 14 |
ml torchvision/0.12.0
|
|
|
|
| 8 |
ml OpenMPI/4.1.2
|
| 9 |
ml CUDA/11.5
|
| 10 |
ml cuDNN/8.3.1.22-CUDA-11.5
|
| 11 |
+
|
| 12 |
+
ml NCCL/2.11.4-CUDA-11.5
|
| 13 |
+
#ml NCCL/2.12.7-1-CUDA-11.5
|
| 14 |
+
|
| 15 |
ml PyTorch/1.11-CUDA-11.5
|
| 16 |
ml Horovod/0.24
|
| 17 |
ml torchvision/0.12.0
|
train_ddgan.py
CHANGED
|
@@ -195,14 +195,14 @@ def sample_from_model(coefficients, generator, n_time, x_init, T, opt, cond=None
|
|
| 195 |
from utils import ResampledShards2
|
| 196 |
|
| 197 |
def train(rank, gpu, args):
|
| 198 |
-
from score_sde.models.discriminator import Discriminator_small, Discriminator_large
|
| 199 |
from score_sde.models.ncsnpp_generator_adagn import NCSNpp
|
| 200 |
from EMA import EMA
|
| 201 |
|
| 202 |
torch.manual_seed(args.seed + rank)
|
| 203 |
torch.cuda.manual_seed(args.seed + rank)
|
| 204 |
torch.cuda.manual_seed_all(args.seed + rank)
|
| 205 |
-
device =
|
| 206 |
|
| 207 |
batch_size = args.batch_size
|
| 208 |
|
|
@@ -254,19 +254,28 @@ def train(rank, gpu, args):
|
|
| 254 |
dataset = ImageFolder(root=args.dataset_root, transform=train_transform)
|
| 255 |
elif args.dataset == 'wds':
|
| 256 |
import webdataset as wds
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
])
|
| 264 |
-
# pipeline = [wds.SimpleShardList(args.dataset_root)]
|
| 265 |
pipeline = [ResampledShards2(args.dataset_root)]
|
| 266 |
pipeline.extend([
|
| 267 |
wds.split_by_node,
|
| 268 |
wds.split_by_worker,
|
| 269 |
wds.tarfile_to_samples(handler=log_and_continue),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
])
|
| 271 |
pipeline.extend([
|
| 272 |
wds.decode("pilrgb", handler=log_and_continue),
|
|
@@ -284,16 +293,20 @@ def train(rank, gpu, args):
|
|
| 284 |
)
|
| 285 |
|
| 286 |
if args.dataset != "wds":
|
| 287 |
-
train_sampler = torch.utils.data.distributed.DistributedSampler(
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
text_encoder = t5.T5Encoder(name=args.text_encoder, masked_mean=args.masked_mean).to(device)
|
| 298 |
args.cond_size = text_encoder.output_size
|
| 299 |
netG = NCSNpp(args).to(device)
|
|
@@ -302,18 +315,30 @@ def train(rank, gpu, args):
|
|
| 302 |
nb_params += param.flatten().shape[0]
|
| 303 |
print("Number of generator parameters:", nb_params)
|
| 304 |
|
| 305 |
-
|
| 306 |
-
if args.dataset == 'cifar10' or args.dataset == 'stackmnist':
|
| 307 |
netD = Discriminator_small(nc = 2*args.num_channels, ngf = args.ngf,
|
| 308 |
t_emb_dim = args.t_emb_dim,
|
| 309 |
cond_size=text_encoder.output_size,
|
| 310 |
act=nn.LeakyReLU(0.2)).to(device)
|
| 311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
netD = Discriminator_large(nc = 2*args.num_channels, ngf = args.ngf,
|
| 313 |
-
|
| 314 |
cond_size=text_encoder.output_size,
|
| 315 |
-
|
| 316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
broadcast_params(netG.parameters())
|
| 318 |
broadcast_params(netD.parameters())
|
| 319 |
|
|
@@ -326,13 +351,9 @@ def train(rank, gpu, args):
|
|
| 326 |
schedulerG = torch.optim.lr_scheduler.CosineAnnealingLR(optimizerG, args.num_epoch, eta_min=1e-5)
|
| 327 |
schedulerD = torch.optim.lr_scheduler.CosineAnnealingLR(optimizerD, args.num_epoch, eta_min=1e-5)
|
| 328 |
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
#ddp
|
| 332 |
netG = nn.parallel.DistributedDataParallel(netG, device_ids=[gpu])
|
| 333 |
netD = nn.parallel.DistributedDataParallel(netD, device_ids=[gpu])
|
| 334 |
|
| 335 |
-
|
| 336 |
exp = args.exp
|
| 337 |
parent_dir = "./saved_info/dd_gan/{}".format(args.dataset)
|
| 338 |
|
|
@@ -343,7 +364,6 @@ def train(rank, gpu, args):
|
|
| 343 |
copy_source(__file__, exp_path)
|
| 344 |
shutil.copytree('score_sde/models', os.path.join(exp_path, 'score_sde/models'))
|
| 345 |
|
| 346 |
-
|
| 347 |
coeff = Diffusion_Coefficients(args, device)
|
| 348 |
pos_coeff = Posterior_Coefficients(args, device)
|
| 349 |
T = get_time_schedule(args, device)
|
|
@@ -368,7 +388,6 @@ def train(rank, gpu, args):
|
|
| 368 |
else:
|
| 369 |
global_step, epoch, init_epoch = 0, 0, 0
|
| 370 |
|
| 371 |
-
|
| 372 |
for epoch in range(init_epoch, args.num_epoch+1):
|
| 373 |
if args.dataset == "wds":
|
| 374 |
os.environ["WDS_EPOCH"] = str(epoch)
|
|
@@ -388,7 +407,6 @@ def train(rank, gpu, args):
|
|
| 388 |
|
| 389 |
for p in netD.parameters():
|
| 390 |
p.requires_grad = True
|
| 391 |
-
|
| 392 |
|
| 393 |
netD.zero_grad()
|
| 394 |
|
|
@@ -401,9 +419,10 @@ def train(rank, gpu, args):
|
|
| 401 |
x_t, x_tp1 = q_sample_pairs(coeff, real_data, t)
|
| 402 |
x_t.requires_grad = True
|
| 403 |
|
| 404 |
-
|
|
|
|
| 405 |
# train with real
|
| 406 |
-
D_real = netD(x_t, t, x_tp1.detach(), cond=
|
| 407 |
|
| 408 |
errD_real = F.softplus(-D_real)
|
| 409 |
errD_real = errD_real.mean()
|
|
@@ -442,7 +461,7 @@ def train(rank, gpu, args):
|
|
| 442 |
x_0_predict = netG(x_tp1.detach(), t, latent_z, cond=(cond_pooled, cond, cond_mask))
|
| 443 |
x_pos_sample = sample_posterior(pos_coeff, x_0_predict, x_tp1, t)
|
| 444 |
|
| 445 |
-
output = netD(x_pos_sample, t, x_tp1.detach(), cond=
|
| 446 |
|
| 447 |
|
| 448 |
errD_fake = F.softplus(output)
|
|
@@ -474,7 +493,7 @@ def train(rank, gpu, args):
|
|
| 474 |
x_0_predict = netG(x_tp1.detach(), t, latent_z, cond=(cond_pooled, cond, cond_mask))
|
| 475 |
x_pos_sample = sample_posterior(pos_coeff, x_0_predict, x_tp1, t)
|
| 476 |
|
| 477 |
-
output = netD(x_pos_sample, t, x_tp1.detach(), cond=
|
| 478 |
|
| 479 |
|
| 480 |
errG = F.softplus(-output)
|
|
@@ -658,7 +677,9 @@ if __name__ == '__main__':
|
|
| 658 |
parser.add_argument('--save_content', action='store_true',default=False)
|
| 659 |
parser.add_argument('--save_content_every', type=int, default=50, help='save content for resuming every x epochs')
|
| 660 |
parser.add_argument('--save_ckpt_every', type=int, default=25, help='save ckpt every x epochs')
|
| 661 |
-
|
|
|
|
|
|
|
| 662 |
###ddp
|
| 663 |
parser.add_argument('--num_proc_node', type=int, default=1,
|
| 664 |
help='The number of nodes in multi node env.')
|
|
@@ -671,30 +692,9 @@ if __name__ == '__main__':
|
|
| 671 |
parser.add_argument('--master_address', type=str, default='127.0.0.1',
|
| 672 |
help='address for master')
|
| 673 |
|
| 674 |
-
|
| 675 |
args = parser.parse_args()
|
| 676 |
# args.world_size = args.num_proc_node * args.num_process_per_node
|
| 677 |
args.world_size = int(os.getenv("SLURM_NTASKS"))
|
| 678 |
args.rank = int(os.environ['SLURM_PROCID'])
|
| 679 |
# size = args.num_process_per_node
|
| 680 |
-
init_processes(args.rank, args.world_size, train, args)
|
| 681 |
-
# if size > 1:
|
| 682 |
-
# processes = []
|
| 683 |
-
# for rank in range(size):
|
| 684 |
-
# args.local_rank = rank
|
| 685 |
-
# global_rank = rank + args.node_rank * args.num_process_per_node
|
| 686 |
-
# global_size = args.num_proc_node * args.num_process_per_node
|
| 687 |
-
# args.global_rank = global_rank
|
| 688 |
-
# print('Node rank %d, local proc %d, global proc %d' % (args.node_rank, rank, global_rank))
|
| 689 |
-
# p = Process(target=init_processes, args=(global_rank, global_size, train, args))
|
| 690 |
-
# p.start()
|
| 691 |
-
# processes.append(p)
|
| 692 |
-
|
| 693 |
-
# for p in processes:
|
| 694 |
-
# p.join()
|
| 695 |
-
# else:
|
| 696 |
-
# print('starting in debug mode')
|
| 697 |
-
|
| 698 |
-
# init_processes(0, size, train, args)
|
| 699 |
-
|
| 700 |
-
|
|
|
|
| 195 |
from utils import ResampledShards2
|
| 196 |
|
| 197 |
def train(rank, gpu, args):
|
| 198 |
+
from score_sde.models.discriminator import Discriminator_small, Discriminator_large, CondAttnDiscriminator, SmallCondAttnDiscriminator
|
| 199 |
from score_sde.models.ncsnpp_generator_adagn import NCSNpp
|
| 200 |
from EMA import EMA
|
| 201 |
|
| 202 |
torch.manual_seed(args.seed + rank)
|
| 203 |
torch.cuda.manual_seed(args.seed + rank)
|
| 204 |
torch.cuda.manual_seed_all(args.seed + rank)
|
| 205 |
+
device = "cuda"
|
| 206 |
|
| 207 |
batch_size = args.batch_size
|
| 208 |
|
|
|
|
| 254 |
dataset = ImageFolder(root=args.dataset_root, transform=train_transform)
|
| 255 |
elif args.dataset == 'wds':
|
| 256 |
import webdataset as wds
|
| 257 |
+
if args.preprocessing == "resize":
|
| 258 |
+
train_transform = transforms.Compose([
|
| 259 |
+
transforms.Resize(args.image_size),
|
| 260 |
+
transforms.CenterCrop(args.image_size),
|
| 261 |
+
transforms.ToTensor(),
|
| 262 |
+
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
|
| 263 |
+
])
|
| 264 |
+
elif args.preprocessing == "random_resized_crop_v1":
|
| 265 |
+
train_transform = transforms.Compose([
|
| 266 |
+
transforms.RandomResizedCrop(256, scale=(0.95, 1.0), interpolation=3),
|
| 267 |
+
transforms.ToTensor(),
|
| 268 |
+
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
|
| 269 |
])
|
|
|
|
| 270 |
pipeline = [ResampledShards2(args.dataset_root)]
|
| 271 |
pipeline.extend([
|
| 272 |
wds.split_by_node,
|
| 273 |
wds.split_by_worker,
|
| 274 |
wds.tarfile_to_samples(handler=log_and_continue),
|
| 275 |
+
wds.shuffle(
|
| 276 |
+
bufsize=5000,
|
| 277 |
+
initial=1000,
|
| 278 |
+
),
|
| 279 |
])
|
| 280 |
pipeline.extend([
|
| 281 |
wds.decode("pilrgb", handler=log_and_continue),
|
|
|
|
| 293 |
)
|
| 294 |
|
| 295 |
if args.dataset != "wds":
|
| 296 |
+
train_sampler = torch.utils.data.distributed.DistributedSampler(
|
| 297 |
+
dataset,
|
| 298 |
+
num_replicas=args.world_size,
|
| 299 |
+
rank=rank
|
| 300 |
+
)
|
| 301 |
+
data_loader = torch.utils.data.DataLoader(
|
| 302 |
+
dataset,
|
| 303 |
+
batch_size=batch_size,
|
| 304 |
+
shuffle=False,
|
| 305 |
+
num_workers=4,
|
| 306 |
+
drop_last=True,
|
| 307 |
+
pin_memory=True,
|
| 308 |
+
sampler=train_sampler,
|
| 309 |
+
)
|
| 310 |
text_encoder = t5.T5Encoder(name=args.text_encoder, masked_mean=args.masked_mean).to(device)
|
| 311 |
args.cond_size = text_encoder.output_size
|
| 312 |
netG = NCSNpp(args).to(device)
|
|
|
|
| 315 |
nb_params += param.flatten().shape[0]
|
| 316 |
print("Number of generator parameters:", nb_params)
|
| 317 |
|
| 318 |
+
if args.discr_type == "small":
|
|
|
|
| 319 |
netD = Discriminator_small(nc = 2*args.num_channels, ngf = args.ngf,
|
| 320 |
t_emb_dim = args.t_emb_dim,
|
| 321 |
cond_size=text_encoder.output_size,
|
| 322 |
act=nn.LeakyReLU(0.2)).to(device)
|
| 323 |
+
elif args.discr_type == "small_cond_attn":
|
| 324 |
+
netD = SmallCondAttnDiscriminator(nc = 2*args.num_channels, ngf = args.ngf,
|
| 325 |
+
t_emb_dim = args.t_emb_dim,
|
| 326 |
+
cond_size=text_encoder.output_size,
|
| 327 |
+
act=nn.LeakyReLU(0.2)).to(device)
|
| 328 |
+
|
| 329 |
+
elif args.discr_type == "large":
|
| 330 |
netD = Discriminator_large(nc = 2*args.num_channels, ngf = args.ngf,
|
| 331 |
+
t_emb_dim = args.t_emb_dim,
|
| 332 |
cond_size=text_encoder.output_size,
|
| 333 |
+
act=nn.LeakyReLU(0.2)).to(device)
|
| 334 |
+
elif args.discr_type == "large_cond_attn":
|
| 335 |
+
netD = CondAttnDiscriminator(
|
| 336 |
+
nc = 2*args.num_channels,
|
| 337 |
+
ngf = args.ngf,
|
| 338 |
+
t_emb_dim = args.t_emb_dim,
|
| 339 |
+
cond_size=text_encoder.output_size,
|
| 340 |
+
act=nn.LeakyReLU(0.2)).to(device)
|
| 341 |
+
|
| 342 |
broadcast_params(netG.parameters())
|
| 343 |
broadcast_params(netD.parameters())
|
| 344 |
|
|
|
|
| 351 |
schedulerG = torch.optim.lr_scheduler.CosineAnnealingLR(optimizerG, args.num_epoch, eta_min=1e-5)
|
| 352 |
schedulerD = torch.optim.lr_scheduler.CosineAnnealingLR(optimizerD, args.num_epoch, eta_min=1e-5)
|
| 353 |
|
|
|
|
|
|
|
|
|
|
| 354 |
netG = nn.parallel.DistributedDataParallel(netG, device_ids=[gpu])
|
| 355 |
netD = nn.parallel.DistributedDataParallel(netD, device_ids=[gpu])
|
| 356 |
|
|
|
|
| 357 |
exp = args.exp
|
| 358 |
parent_dir = "./saved_info/dd_gan/{}".format(args.dataset)
|
| 359 |
|
|
|
|
| 364 |
copy_source(__file__, exp_path)
|
| 365 |
shutil.copytree('score_sde/models', os.path.join(exp_path, 'score_sde/models'))
|
| 366 |
|
|
|
|
| 367 |
coeff = Diffusion_Coefficients(args, device)
|
| 368 |
pos_coeff = Posterior_Coefficients(args, device)
|
| 369 |
T = get_time_schedule(args, device)
|
|
|
|
| 388 |
else:
|
| 389 |
global_step, epoch, init_epoch = 0, 0, 0
|
| 390 |
|
|
|
|
| 391 |
for epoch in range(init_epoch, args.num_epoch+1):
|
| 392 |
if args.dataset == "wds":
|
| 393 |
os.environ["WDS_EPOCH"] = str(epoch)
|
|
|
|
| 407 |
|
| 408 |
for p in netD.parameters():
|
| 409 |
p.requires_grad = True
|
|
|
|
| 410 |
|
| 411 |
netD.zero_grad()
|
| 412 |
|
|
|
|
| 419 |
x_t, x_tp1 = q_sample_pairs(coeff, real_data, t)
|
| 420 |
x_t.requires_grad = True
|
| 421 |
|
| 422 |
+
cond_for_discr = (cond_pooled, cond, cond_mask) if args.discr_type in ("large_cond_attn", "small_cond_attn") else cond_pooled
|
| 423 |
+
|
| 424 |
# train with real
|
| 425 |
+
D_real = netD(x_t, t, x_tp1.detach(), cond=cond_for_discr).view(-1)
|
| 426 |
|
| 427 |
errD_real = F.softplus(-D_real)
|
| 428 |
errD_real = errD_real.mean()
|
|
|
|
| 461 |
x_0_predict = netG(x_tp1.detach(), t, latent_z, cond=(cond_pooled, cond, cond_mask))
|
| 462 |
x_pos_sample = sample_posterior(pos_coeff, x_0_predict, x_tp1, t)
|
| 463 |
|
| 464 |
+
output = netD(x_pos_sample, t, x_tp1.detach(), cond=cond_for_discr).view(-1)
|
| 465 |
|
| 466 |
|
| 467 |
errD_fake = F.softplus(output)
|
|
|
|
| 493 |
x_0_predict = netG(x_tp1.detach(), t, latent_z, cond=(cond_pooled, cond, cond_mask))
|
| 494 |
x_pos_sample = sample_posterior(pos_coeff, x_0_predict, x_tp1, t)
|
| 495 |
|
| 496 |
+
output = netD(x_pos_sample, t, x_tp1.detach(), cond=cond_for_discr).view(-1)
|
| 497 |
|
| 498 |
|
| 499 |
errG = F.softplus(-output)
|
|
|
|
| 677 |
parser.add_argument('--save_content', action='store_true',default=False)
|
| 678 |
parser.add_argument('--save_content_every', type=int, default=50, help='save content for resuming every x epochs')
|
| 679 |
parser.add_argument('--save_ckpt_every', type=int, default=25, help='save ckpt every x epochs')
|
| 680 |
+
parser.add_argument('--discr_type', type=str, default="large")
|
| 681 |
+
parser.add_argument('--preprocessing', type=str, default="resize")
|
| 682 |
+
|
| 683 |
###ddp
|
| 684 |
parser.add_argument('--num_proc_node', type=int, default=1,
|
| 685 |
help='The number of nodes in multi node env.')
|
|
|
|
| 692 |
parser.add_argument('--master_address', type=str, default='127.0.0.1',
|
| 693 |
help='address for master')
|
| 694 |
|
|
|
|
| 695 |
args = parser.parse_args()
|
| 696 |
# args.world_size = args.num_proc_node * args.num_process_per_node
|
| 697 |
args.world_size = int(os.getenv("SLURM_NTASKS"))
|
| 698 |
args.rank = int(os.environ['SLURM_PROCID'])
|
| 699 |
# size = args.num_process_per_node
|
| 700 |
+
init_processes(args.rank, args.world_size, train, args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|