Spaces:
Runtime error
Runtime error
Update elo.py
Browse files
elo.py
CHANGED
@@ -1,20 +1,3 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
from datasets import Dataset
|
3 |
-
|
4 |
-
def calculate_elo(old_rating, opponent_rating, score, k_factor):
|
5 |
-
"""
|
6 |
-
Calculate the new ELO rating for a player.
|
7 |
-
|
8 |
-
:param old_rating: The current ELO rating of the player.
|
9 |
-
:param opponent_rating: The ELO rating of the opponent.
|
10 |
-
:param score: The score of the game (1 for win, 0.5 for draw, 0 for loss).
|
11 |
-
:param k_factor: The K-factor used in ELO rating.
|
12 |
-
:return: The new ELO rating.
|
13 |
-
"""
|
14 |
-
expected_score = 1 / (1 + 10 ** ((opponent_rating - old_rating) / 400))
|
15 |
-
new_rating = old_rating + k_factor * (score - expected_score)
|
16 |
-
return new_rating
|
17 |
-
|
18 |
def update_elo_ratings(ratings_dataset, winner, loser):
|
19 |
# Convert the Hugging Face dataset to a pandas DataFrame
|
20 |
ratings_df = pd.DataFrame(ratings_dataset)
|
@@ -50,8 +33,7 @@ def update_elo_ratings(ratings_dataset, winner, loser):
|
|
50 |
loser_k_factor = determine_k_factor(loser_games_played)
|
51 |
|
52 |
# Calculate new ratings
|
53 |
-
winner_new_rating =
|
54 |
-
loser_new_rating = calculate_elo(loser_old_rating, winner_old_rating, 0, loser_k_factor)
|
55 |
|
56 |
# Update the DataFrame
|
57 |
ratings_df.loc[ratings_df['bot_name'] == winner, 'elo_rating'] = winner_new_rating
|
@@ -60,4 +42,4 @@ def update_elo_ratings(ratings_dataset, winner, loser):
|
|
60 |
# Convert the DataFrame back to a Hugging Face dataset
|
61 |
updated_ratings_dataset = Dataset.from_pandas(ratings_df)
|
62 |
|
63 |
-
return updated_ratings_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def update_elo_ratings(ratings_dataset, winner, loser):
|
2 |
# Convert the Hugging Face dataset to a pandas DataFrame
|
3 |
ratings_df = pd.DataFrame(ratings_dataset)
|
|
|
33 |
loser_k_factor = determine_k_factor(loser_games_played)
|
34 |
|
35 |
# Calculate new ratings
|
36 |
+
winner_new_rating, loser_new_rating = elo(winner_old_rating, loser_old_rating, k_factor_winner=winner_k_factor, k_factor_loser=loser_k_factor)
|
|
|
37 |
|
38 |
# Update the DataFrame
|
39 |
ratings_df.loc[ratings_df['bot_name'] == winner, 'elo_rating'] = winner_new_rating
|
|
|
42 |
# Convert the DataFrame back to a Hugging Face dataset
|
43 |
updated_ratings_dataset = Dataset.from_pandas(ratings_df)
|
44 |
|
45 |
+
return updated_ratings_dataset
|