File size: 4,820 Bytes
5cbd50f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# Quivr
<p align="center">
<img src="../logo.png" alt="Quivr-logo" width="30%">
<p align="center">
<a href="https://discord.gg/HUpRgp2HG8">
<img src="https://img.shields.io/badge/discord-join%20chat-blue.svg" alt="Join our Discord" height="40">
</a>
Quivr is your second brain in the cloud, designed to easily store and retrieve unstructured information. It's like Obsidian but powered by generative AI.
## Features
- **Store Anything**: Quivr can handle almost any type of data you throw at it. Text, images, code snippets, you name it.
- **Generative AI**: Quivr uses advanced AI to help you generate and retrieve information.
- **Fast and Efficient**: Designed with speed and efficiency in mind. Quivr makes sure you can access your data as quickly as possible.
- **Secure**: Your data is stored securely in the cloud and is always under your control.
- **Compatible Files**:
- **Text**
- **Markdown**
- **PDF**
- **Audio**
- **Video**
- **Open Source**: Quivr is open source and free to use.
## Demo
### Demo with GPT3.5
https://github.com/StanGirard/quivr/assets/19614572/80721777-2313-468f-b75e-09379f694653
### Demo with Claude 100k context
https://github.com/StanGirard/quivr/assets/5101573/9dba918c-9032-4c8d-9eea-94336d2c8bd4
## Getting Started
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.
### Prerequisites
Make sure you have the following installed before continuing:
- Python 3.10 or higher
- Pip
- Virtualenv
You'll also need a [Supabase](https://supabase.com/) account for:
- A new Supabase project
- Supabase Project API key
- Supabase Project URL
### Installing
- Clone the repository
```bash
git clone [email protected]:StanGirard/Quivr.git && cd Quivr
```
- Create a virtual environment
```bash
virtualenv venv
```
- Activate the virtual environment
```bash
source venv/bin/activate
```
- Install the dependencies
```bash
pip install -r requirements.txt
```
- Copy the streamlit secrets.toml example file
```bash
cp .streamlit/secrets.toml.example .streamlit/secrets.toml
```
- Add your credentials to .streamlit/secrets.toml file
```toml
supabase_url = "SUPABASE_URL"
supabase_service_key = "SUPABASE_SERVICE_KEY"
openai_api_key = "OPENAI_API_KEY"
anthropic_api_key = "ANTHROPIC_API_KEY" # Optional
```
_Note that the `supabase_service_key` is found in your Supabase dashboard under Project Settings -> API. Use the `anon` `public` key found in the `Project API keys` section._
- Run the following migration scripts on the Supabase database via the web interface (SQL Editor -> `New query`)
```sql
-- Enable the pgvector extension to work with embedding vectors
create extension vector;
-- Create a table to store your documents
create table documents (
id bigserial primary key,
content text, -- corresponds to Document.pageContent
metadata jsonb, -- corresponds to Document.metadata
embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed
);
CREATE FUNCTION match_documents(query_embedding vector(1536), match_count int)
RETURNS TABLE(
id bigint,
content text,
metadata jsonb,
-- we return matched vectors to enable maximal marginal relevance searches
embedding vector(1536),
similarity float)
LANGUAGE plpgsql
AS $$
# variable_conflict use_column
BEGIN
RETURN query
SELECT
id,
content,
metadata,
embedding,
1 -(documents.embedding <=> query_embedding) AS similarity
FROM
documents
ORDER BY
documents.embedding <=> query_embedding
LIMIT match_count;
END;
$$;
```
and
```sql
create table
stats (
-- A column called "time" with data type "timestamp"
time timestamp,
-- A column called "details" with data type "text"
chat boolean,
embedding boolean,
details text,
metadata jsonb,
-- An "integer" primary key column called "id" that is generated always as identity
id integer primary key generated always as identity
);
```
- Run the app
```bash
streamlit run main.py
```
## Built With
* [NextJS](https://nextjs.org/) - The React framework used.
* [FastAPI](https://fastapi.tiangolo.com/) - The API framework used.
* [Supabase](https://supabase.io/) - The open source Firebase alternative.
## Contributing
Open a pull request and we'll review it as soon as possible.
## Star History
[](https://star-history.com/#StanGirard/quivr&Date)
|