Spaces:
Running
Running
File size: 15,190 Bytes
e8b2588 6964c03 e8b2588 6964c03 e8b2588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, Header
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import google.generativeai as genai
from typing import List
import os
from dotenv import load_dotenv
import io
from datetime import datetime, timedelta
import uuid
import json
import re
# File Format Libraries
import PyPDF2
import docx
import openpyxl
import csv
import io
import pptx
from db import get_db, Chat, ChatMessage, User, Document, SessionLocal
from pyqs import get_q_paper
from fastapi.security import OAuth2PasswordBearer
import requests
from jose import jwt
import random
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
load_dotenv()
GOOGLE_CLIENT_ID = os.getenv('GOOGLE_CLIENT_ID')
GOOGLE_CLIENT_SECRET = os.getenv('GOOGLE_CLIENT_SECRET')
GOOGLE_REDIRECT_URI = os.getenv('GOOGLE_REDIRECT_URI')
api_keys = os.getenv('GEMINI_API_KEYS').split(',')
def parse_json_from_gemini(json_str: str):
try:
# Remove potential leading/trailing whitespace
json_str = json_str.strip()
# Extract JSON content from triple backticks and "json" language specifier
json_match = re.search(r"```json\s*(.*?)\s*```", json_str, re.DOTALL)
if json_match:
json_str = json_match.group(1)
return json.loads(json_str)
except (json.JSONDecodeError, AttributeError):
return None
load_dotenv()
app = FastAPI(title="EduScope AI")
# Configure CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/login/google")
async def login_google():
return {
"url": f"https://accounts.google.com/o/oauth2/auth?response_type=code&client_id={GOOGLE_CLIENT_ID}&redirect_uri={GOOGLE_REDIRECT_URI}&scope=openid%20profile%20email&access_type=offline"
}
@app.get("/auth/google")
async def auth_google(code: str, db: SessionLocal = Depends(get_db)):
token_url = "https://accounts.google.com/o/oauth2/token"
data = {
"code": code,
"client_id": GOOGLE_CLIENT_ID,
"client_secret": GOOGLE_CLIENT_SECRET,
"redirect_uri": GOOGLE_REDIRECT_URI,
"grant_type": "authorization_code",
}
response = requests.post(token_url, data=data)
access_token = response.json().get("access_token")
user_info = requests.get("https://www.googleapis.com/oauth2/v1/userinfo", headers={"Authorization": f"Bearer {access_token}"}).json()
user = db.query(User).filter(User.id == user_info["id"]).first()
if not user:
user = User(id=user_info["id"], email=user_info["email"], name=user_info["name"])
db.add(user)
db.commit()
return {"token": jwt.encode(user_info, GOOGLE_CLIENT_SECRET, algorithm="HS256")}
# return user_info.json()
async def decode_token(authorization: str = Header(...)):
if not authorization.startswith("Bearer "):
raise HTTPException(
status_code=400,
detail="Authorization header must start with 'Bearer '"
)
token = authorization[len("Bearer "):] # Extract token part
try:
# Decode and verify the JWT token
token_data = jwt.decode(token, GOOGLE_CLIENT_SECRET, algorithms=["HS256"])
return token_data # Return decoded token data
except jwt.ExpiredSignatureError:
raise HTTPException(status_code=401, detail="Token has expired")
except jwt.InvalidTokenError:
raise HTTPException(status_code=401, detail="Invalid token")
@app.get("/token")
async def get_token(user_data: dict = Depends(decode_token)):
return user_data
@app.post("/chats")
async def create_chat(title: str, user_data: dict = Depends(decode_token), db: SessionLocal = Depends(get_db)):
user_id = user_data["id"]
chat = Chat(chat_id=str(uuid.uuid4()), user_id=user_id, title=title)
db.add(chat)
db.commit()
return {"chat_id": chat.chat_id, "title": title, "timestamp": chat.timestamp}
@app.get("/chats")
async def get_chats(user_data: dict = Depends(decode_token), db: SessionLocal = Depends(get_db)):
user_id = user_data["id"]
chats = db.query(Chat).filter(Chat.user_id == user_id).all()
return [{"chat_id": chat.chat_id, "title": chat.title, "timestamp": chat.timestamp} for chat in chats]
class DocumentSchema(BaseModel):
id: str
name: str
timestamp: str
class Query(BaseModel):
text: str
selected_docs: List[str]
class ChatMessageSchema(BaseModel):
id: str
type: str # 'user' or 'assistant'
content: str
timestamp: str
referenced_docs: List[str] = []
class Analysis(BaseModel):
insight: str
pareto_analysis: dict
def extract_text_from_file(file: UploadFile):
"""
Extract text from various file types
Supports: PDF, DOCX, XLSX, CSV, TXT, PPTX
"""
file_extension = os.path.splitext(file.filename)[1].lower()
content = file.file.read()
print(file_extension)
try:
if file_extension == '.pdf':
pdf_reader = PyPDF2.PdfReader(io.BytesIO(content))
text = "\n".join([page.extract_text() for page in pdf_reader.pages])
elif file_extension == '.docx':
doc = docx.Document(io.BytesIO(content))
text = "\n".join([para.text for para in doc.paragraphs])
elif file_extension == '.xlsx':
wb = openpyxl.load_workbook(io.BytesIO(content), read_only=True)
text = ""
for sheet in wb:
for row in sheet.iter_rows(values_only=True):
text += " ".join(str(cell) for cell in row if cell is not None) + "\n"
elif file_extension == '.csv':
csv_reader = csv.reader(io.StringIO(content.decode('utf-8')))
text = "\n".join([" ".join(row) for row in csv_reader])
elif file_extension == '.txt':
text = content.decode('utf-8')
elif file_extension in ['.ppt', '.pptx']:
ppt = pptx.Presentation(io.BytesIO(content))
text = ""
for slide in ppt.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
else:
raise ValueError(f"Unsupported file type: {file_extension}")
return text
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error processing file: {str(e)}")
@app.get("/searchBySubjectCode")
async def search_by_subject_code(subject_code: str, user_data: dict = Depends(decode_token)):
codes = requests.get(f"https://cl.thapar.edu/search1.php?term={subject_code}",verify=False).json()
return codes
@app.get("/chats/{chat_id}/importQPapers")
async def import_q_papers(chat_id: str, subject_code: str, user_data: dict = Depends(decode_token), db: SessionLocal = Depends(get_db)):
user_id = user_data["id"]
chat = db.query(Chat).filter(Chat.chat_id == chat_id, Chat.user_id == user_id).first()
if not chat:
raise HTTPException(status_code=404, detail="Chat not found")
q_papers = get_q_paper(subject_code)
if not q_papers:
raise HTTPException(status_code=404, detail="No question papers found for the given subject code")
for paper in q_papers:
download_link = paper["DownloadLink"]
response = requests.get(download_link, verify=False)
if response.status_code != 200:
raise HTTPException(status_code=500, detail=f"Failed to download the paper from {download_link}")
try:
pdf_reader = PyPDF2.PdfReader(io.BytesIO(response.content))
text = "\n".join([page.extract_text() for page in pdf_reader.pages])
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to process PDF: {str(e)}")
title = f"{paper['CourseName']}_{paper['Year']}_{paper['Semester']}_{paper['ExamType']}..pdf"
doc_id = str(uuid.uuid4())
document = Document(
id=doc_id,
chat_id=chat_id,
name=title,
content=text,
timestamp=datetime.now()
)
db.add(document)
db.commit()
return {"message": "Question papers imported successfully"}
@app.post("/chats/{chat_id}/upload")
async def upload_document(chat_id: str, file: UploadFile = File(...), user_data: dict = Depends(decode_token), db: SessionLocal = Depends(get_db)):
user_id = user_data["id"]
# Check if the chat exists and belongs to the user
chat = db.query(Chat).filter(Chat.chat_id == chat_id, Chat.user_id == user_id).first()
if not chat:
raise HTTPException(status_code=404, detail="Chat not found")
try:
text = extract_text_from_file(file)
doc_id = str(uuid.uuid4())
document = Document(
id=doc_id,
chat_id=chat_id,
name=file.filename,
content=text,
timestamp=datetime.now()
)
db.add(document)
db.commit()
db.refresh(document)
return {
"id": document.id,
"name": document.name,
"timestamp": document.timestamp.isoformat()
}
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}")
@app.get("/chats/{chat_id}/documents")
async def get_documents(chat_id: str, user_data: dict = Depends(decode_token), db: SessionLocal = Depends(get_db)):
user_id = user_data["id"]
chat = db.query(Chat).filter(Chat.chat_id == chat_id, Chat.user_id == user_id).first()
if not chat:
raise HTTPException(status_code=404, detail="Chat not found")
documents = db.query(Document).filter(Document.chat_id == chat_id).all()
return [{
"id": doc.id,
"name": doc.name,
"timestamp": doc.timestamp.isoformat()
} for doc in documents]
@app.post("/chats/{chat_id}/analyze", response_model=Analysis)
async def analyze_text(chat_id: str, query: Query, user_data: dict = Depends(decode_token), db: SessionLocal = Depends(get_db)):
user_id = user_data["id"]
# Check if the chat exists and belongs to the user
chat = db.query(Chat).filter(Chat.chat_id == chat_id, Chat.user_id == user_id).first()
if not chat:
raise HTTPException(status_code=404, detail="Chat not found")
# Fetch documents
docs = db.query(Document).filter(Document.chat_id == chat_id, Document.id.in_(query.selected_docs)).all()
if not docs:
raise HTTPException(status_code=400, detail="No documents found for analysis")
# Combine content from selected documents
combined_context = "\n\n".join([
f"Document '{doc.name}':\n{doc.content}" for doc in docs
])
prompt = f"""
Analyze the following text in the context of this query: {query.text}
Context from multiple documents:
{combined_context}
Provide:
1. Detailed insights and analysis, comparing information across documents when relevant
2. Apply the Pareto Principle (80/20 rule) to identify the most important aspects
Format the response as JSON with 'insight' and 'pareto_analysis' keys.
Example format:
{{
"insight": "Key findings and analysis from the documents based on query...",
"pareto_analysis": {{
"vital_few": "The 20% of factors that drive 80% of the impact...",
"trivial_many": "The remaining 80% of factors that contribute 20% of the impact..."
}}
}}
also give a complete html document with a intreactive quiz (minimum 5 questions) using jquery and also a flashcards to help the user understand the content better.
"""
api_key = random.choice(api_keys)
genai.configure(api_key=api_key)
print("Selected API Key: ", api_key)
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(prompt)
response_text = response.text
# Save user message
user_message = ChatMessage(
id=str(uuid.uuid4()),
chat_id=chat_id,
type="user",
content=query.text,
timestamp=datetime.now(),
referenced_docs=json.dumps(query.selected_docs)
)
db.add(user_message)
# Parse analysis
analysis = parse_json_from_gemini(response_text)
# Save assistant message
assistant_message = ChatMessage(
id=str(uuid.uuid4()),
chat_id=chat_id,
type="assistant",
content=json.dumps(analysis, indent=4),
timestamp=datetime.now() -timedelta(seconds=3),
referenced_docs=json.dumps(query.selected_docs)
)
db.add(assistant_message)
if '```html' in response_text:
html = response_text.split('```html')[1]
html = html.split('```')[0]
html = html.strip()
assistant_message_1 = ChatMessage(
id=str(uuid.uuid4()),
chat_id=chat_id,
type="assistant",
content=html,
timestamp=datetime.now(),
referenced_docs=json.dumps(query.selected_docs)
)
db.add(assistant_message_1)
db.commit()
return analysis
@app.get("/chats/{chat_id}/chat-history")
async def get_chat_history(chat_id: str, user_data: dict = Depends(decode_token), db: SessionLocal = Depends(get_db)):
user_id = user_data["id"]
# Check if the chat exists and belongs to the user
chat = db.query(Chat).filter(Chat.chat_id == chat_id, Chat.user_id == user_id).first()
if not chat:
raise HTTPException(status_code=404, detail="Chat not found")
messages = db.query(ChatMessage).filter(ChatMessage.chat_id == chat_id).order_by(ChatMessage.timestamp).all()
return [{
"id": msg.id,
"type": msg.type,
"content": msg.content,
"timestamp": msg.timestamp.isoformat(),
"referenced_docs": json.loads(msg.referenced_docs) if msg.referenced_docs else []
} for msg in messages]
@app.delete("/chats/{chat_id}/clear")
async def clear_chat(chat_id: str, user_data: dict = Depends(decode_token), db: SessionLocal = Depends(get_db)):
user_id = user_data["id"]
chat = db.query(Chat).filter(Chat.chat_id == chat_id, Chat.user_id == user_id).first()
if not chat:
raise HTTPException(status_code=404, detail="Chat not found")
# Delete documents and messages
db.query(Document).filter(Document.chat_id == chat_id).delete()
db.query(ChatMessage).filter(ChatMessage.chat_id == chat_id).delete()
db.commit()
return {"message": "Chat cleared successfully"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|