from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer import torch from threading import Thread import gradio as gr import spaces model_id = "ByteDance-Seed/Seed-Coder-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto" ).eval() def format_conversation_history(chat_history): messages = [] for item in chat_history: role = item["role"] content = item["content"] if isinstance(content, list): content = content[0]["text"] if content and "text" in content[0] else str(content) messages.append({"role": role, "content": content}) return messages @spaces.GPU(duration=120) def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty): new_message = {"role": "user", "content": input_data} system_message = [{"role": "system", "content": system_prompt}] if system_prompt else [] processed_history = format_conversation_history(chat_history) messages = system_message + processed_history + [new_message] inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_tensors="pt" ).to(model.device) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) generation_kwargs = { "input_ids": inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty } thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() outputs = [] for text_chunk in streamer: outputs.append(text_chunk) yield "".join(outputs) demo = gr.ChatInterface( fn=generate_response, additional_inputs=[ gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=1024), gr.Textbox( label="System Prompt", value="You are a helpful coding assistant specializing in generating accurate and efficient code.", lines=4, placeholder="Change system prompt" ), gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7), gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9), gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50), gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0) ], examples=[ [{"text": "Write a Python A* search algorithm to find the optimal path in a grid-based map for a pathfinding application."}], [{"text": "Write a JavaScript function to validate email address and telephone number using regular expressions."}], [{"text": "Write an HTML/CSS stylesheet to style a multi level navigation menu with hover effects and mobile compatibility"}], ], cache_examples=False, type="messages", description=""" # Seed-Coder-8B-Instruct This model excelling in code generation, code completion, code editing and software engineering tasks and developed by ByteDance Seed team. It pre-trained on 6 trillion token dataset supporting 89 programming languages. """, fill_height=True, textbox=gr.Textbox( label="Query Input", placeholder="Type your prompt" ), stop_btn="Stop Generation", multimodal=False, theme=gr.themes.Soft() ) if __name__ == "__main__": demo.launch()