merterbak's picture
No streaming quick demo
a4b21e5 verified
raw
history blame
3.04 kB
from transformers import pipeline, TextIteratorStreamer
import torch
from threading import Thread
import gradio as gr
import spaces
model_id = "openai/gpt-oss-20b"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype="auto",
device_map="auto",
)
def format_conversation_history(chat_history):
messages = []
for item in chat_history:
role = item["role"]
content = item["content"]
if isinstance(content, list):
content = content[0]["text"] if content and "text" in content[0] else str(content)
messages.append({"role": role, "content": content})
return messages
@spaces.GPU(duration=120)
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
new_message = {"role": "user", "content": input_data}
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
processed_history = format_conversation_history(chat_history)
messages = system_message + processed_history + [new_message]
streamer = TextIteratorStreamer(pipe.tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty
}
thread = Thread(target=pipe, args=(messages,), kwargs=generation_kwargs)
thread.start()
outputs = []
for text_chunk in streamer:
outputs.append(text_chunk)
yield "".join(outputs)
demo = gr.ChatInterface(
fn=generate_response,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=1024),
gr.Textbox(
label="System Prompt",
value="You are a helpful assistant. Reasoning: medium",
lines=4,
placeholder="Change system prompt"
),
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0)
],
examples=[
[{"text": "What are the benefits of open weight AI models"}],
[{"text": "Write a Python function to calculate the Fibonacci sequence"}],
[{"text": "Explain Newton laws clearly and concisely."}],
],
cache_examples=False,
type="messages",
description="""
# gpt-oss-20b
You can adjust reasoning level in the system prompt like "Reasoning: high".
""",
fill_height=True,
textbox=gr.Textbox(
label="Query Input",
placeholder="Type your prompt"
),
stop_btn="Stop Generation",
multimodal=False,
theme=gr.themes.Soft()
)
if __name__ == "__main__":
demo.launch(share=True)