from transformers import pipeline, TextIteratorStreamer import torch from threading import Thread import gradio as gr import spaces import re model_id = "openai/gpt-oss-20b" pipe = pipeline( "text-generation", model=model_id, torch_dtype="auto", device_map="auto", ) def format_conversation_history(chat_history): messages = [] for item in chat_history: role = item["role"] content = item["content"] if isinstance(content, list): content = content[0]["text"] if content and "text" in content[0] else str(content) messages.append({"role": role, "content": content}) return messages @spaces.GPU(duration=60) def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty): new_message = {"role": "user", "content": input_data} system_message = [{"role": "system", "content": system_prompt}] if system_prompt else [] processed_history = format_conversation_history(chat_history) messages = system_message + processed_history + [new_message] streamer = TextIteratorStreamer(pipe.tokenizer, skip_prompt=True, skip_special_tokens=True) generation_kwargs = { "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, "streamer": streamer } thread = Thread(target=pipe, args=(messages,), kwargs=generation_kwargs) thread.start() #streaming try #1 buffer = "" full_response = "" for chunk in streamer: buffer += chunk parts = re.split(r'(\s+)', buffer) if re.match(r'\s+', parts[-1]) is not None: to_append = ''.join(parts) buffer = "" else: to_append = ''.join(parts[:-1]) buffer = parts[-1] if to_append: full_response += to_append yield full_response if buffer: full_response += buffer yield full_response demo = gr.ChatInterface( fn=generate_response, additional_inputs=[ gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048), gr.Textbox( label="System Prompt", value="You are a helpful assistant. Reasoning: medium", lines=4, placeholder="Change system prompt" ), gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7), gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9), gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50), gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0) ], examples=[ [{"text": "Explain Newton laws clearly and concisely"}], [{"text": "Write a Python function to calculate the Fibonacci sequence"}], [{"text": "What are the benefits of open weight AI models"}], ], cache_examples=False, type="messages", description=""" # gpt-oss-20b Wait couple of seconds initially. You can adjust reasoning level in the system prompt like "Reasoning: high. """, fill_height=True, textbox=gr.Textbox( label="Query Input", placeholder="Type your prompt" ), stop_btn="Stop Generation", multimodal=False, theme=gr.themes.Soft() ) if __name__ == "__main__": demo.launch(share=True)