Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
|
5 |
+
def infer_segmentation(prompt, negative_prompt, image):
|
6 |
+
# implement your inference function here
|
7 |
+
im = Image.open("cat_image.jpeg")
|
8 |
+
return im
|
9 |
+
|
10 |
+
def infer_canny(prompt, negative_prompt, image):
|
11 |
+
# implement your inference function here
|
12 |
+
im = Image.open("cat_image.jpeg")
|
13 |
+
return im
|
14 |
+
|
15 |
+
with gr.Blocks() as demo:
|
16 |
+
gr.Markdown("## Stable Diffusion with Different Controls")
|
17 |
+
gr.Markdown("In this app, you can find different ControlNets with different filters. ")
|
18 |
+
|
19 |
+
input_list = [prompt_input, negative_prompt_input, image_input]
|
20 |
+
with gr.Tab("ControlNet on Canny Filter "):
|
21 |
+
prompt_input = gr.Textbox(label="Prompt")
|
22 |
+
negative_prompt_input = gr.Textbox(label="Negative Prompt")
|
23 |
+
image_input = gr.Image(label="Image")
|
24 |
+
submit_btn = gr.Button("Submit")
|
25 |
+
submit_btn.click(fn=write_to_dataset, inputs=input_list, outputs="image")
|
26 |
+
with gr.Tab("ControlNet with Semantic Segmentation"):
|
27 |
+
prompt_input = gr.Textbox(label="Prompt")
|
28 |
+
negative_prompt_input = gr.Textbox(label="Negative Prompt")
|
29 |
+
image_input = gr.Image(label="Image")
|
30 |
+
submit_btn = gr.Button("Submit")
|
31 |
+
submit_btn.click(fn=write_to_dataset, inputs=input_list, outputs="image")
|
32 |
+
|
33 |
+
demo.launch()
|