File size: 539 Bytes
c3bdccf
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import transformers
import gradio as gr
from transformers import pipeline
sentiment =pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
# Classify a new sentence
sentence = "I love this product! It's amazing and works perfectly."
result = sentiment(sentence)
def get_sentiment(text):
    result = sentiment(text)
    label = result[0]['label']
    score = result[0]['score']
    return label, score 
interface = gr.Interface(fn=get_sentiment, inputs= "textbox", outputs=["text","text"])
interface.launch()